Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  8
 Total visitors :  7484984

An irregularly striped rind mutant reveals new insight into the function of PG1β in cucumber (Cucumis sativus L.)

The rind appearance of cucumber is one of the most important commercial quality traits. Usually, an immature cucumber fruit has a uniform rind that varies from green to yellow to white among different cultivated varieties. In the present paper, we isolated a novel fruit appearance cucumber mutant, ist, that has an irregularly striped rind pattern. The mutant displayed green irregular stripes on a yellow-green background at the immature fruit stage.

Mengfei SongMengru ZhangFeng ChengQingzhen WeiJing WangMarzieh DavoudiJinfeng Chen & Qunfeng Lou

Theoretical and Applied Genetics; Feb. 2020; volume 133, pages 371–382 (2020)

Abstract

Key message

Via bulked segregant analysis sequencing combined with linkage mapping, the ist gene responsible for the irregularly striped rind mutation was delimited to a 144-kb region in cucumber. Sequencing and expression analysis identified Csa1G005490 as the candidate gene.

Abstract

The rind appearance of cucumber is one of the most important commercial quality traits. Usually, an immature cucumber fruit has a uniform rind that varies from green to yellow to white among different cultivated varieties. In the present paper, we isolated a novel fruit appearance cucumber mutant, ist, that has an irregularly striped rind pattern. The mutant displayed green irregular stripes on a yellow-green background at the immature fruit stage. Genetic analysis revealed that a single recessive gene, ist, is responsible for this mutation. A BSA (bulked segregant analysis) sequencing approach combined with genetic mapping delimited the ist locus to an interval with a length of 144 kb, and 21 predicted genes were annotated in the region. Based on mutation site screening and expression analysis, two single-nucleotide polymorphisms within the candidate gene, Csa1G005490, were identified as constituting the mutation. Csa1G005490 encodes a polygalacturonase-1 noncatalytic subunit beta protein (PG1β) known to be involved in fruit softening. The expression of Csa1G005490 was significantly lower in the ist mutant than in the wild type. Transcriptome analysis identified 1796 differentially expressed genes (DEGs) between the ist mutant and wild type. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that these DEGs were enriched mostly in photosynthesis and chlorophyll metabolism pathways. Decreased expression patterns of several chlorophyll synthesis genes in the mutant suggest that ist plays a key role in chlorophyll biosynthesis. These results will provide new insight into the molecular mechanism underlying rind appearance polymorphisms in cucumber.

 

See https://link.springer.com/article/10.1007/s00122-019-03468-0

Trở lại      In      Số lần xem: 996

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD