Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  9
 Total visitors :  7489466

Heat stress transcription factor OsSPL7 plays a critical role in reactive oxygen species balance and stress responses in rice.

The rice spotted leaf gene, OsSPL7, induces lesion mimic (LM) spots under heat stress. Herein, we provide several lines of evidence elucidating the importance of OsSPL7 in maintaining reactive oxygen species (ROS) balance via the regulation of downstream gene expression. osspl7 knockout (spl7ko) mutants showed LM and growth retardation. Transgenic rice lines strongly overexpressing OsSPL7 (SPL7OX-S)

Hoang TVVo KTXRahman MMChoi SHJeon JS.

Plant Sci.  2019 Dec; 289:110273. doi: 10.1016/j.plantsci.2019.110273. Epub 2019 Sep 14.

Abstract

The rice spotted leaf gene, OsSPL7, induces lesion mimic (LM) spots under heat stress. Herein, we provide several lines of evidence elucidating the importance of OsSPL7 in maintaining reactive oxygen species (ROS) balance via the regulation of downstream gene expression. osspl7 knockout (spl7ko) mutants showed LM and growth retardation. Transgenic rice lines strongly overexpressing OsSPL7 (SPL7OX-S) exhibited LM accompanied by accumulated H2O2, whereas moderate expressers of OsSPL7 (SPL7OX-M) did not, and neither of them exhibited severe growth defects. Transient expression of OsSPL7-GFP in rice protoplasts indicated that OsSPL7 localizes predominantly in the nucleus. Transcriptional activity assay suggested its function as a transcriptional activator in rice. Disease evaluation showed that both SPL7OX and spl7ko enhanced resistance to Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae, the causal agents of blast and blight diseases in rice, respectively. Additionally, SPL7OX enhanced tolerance to cold stress, whereas spl7ko showed a phenotype opposite to the overexpression lines. RNA sequencing analyses identified four major groups of differentially expressed genes associated with LM, pathogen resistance, LM-pathogen resistance, and potential direct targets of OsSPL7. Collectively, our results suggest that OsSPL7 plays a critical role in plant growth and balancing ROS during biotic and abiotic stress.

 

See https://www.sciencedirect.com/science/article/pii/S0168945219308660?via%3Dihub

 

Figure 1: Production of OsSPL7 knockout and overexpression lines.

Trở lại      In      Số lần xem: 326

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD