Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  57
 Total visitors :  7653343

Osa-miR162a Enhances the Resistance to the Brown Planthopper via α-Linolenic Acid Metabolism in Rice ( Oryza sativa)

The brown planthopper (BPH) is the most serious pest causing yield losses in rice. MicroRNAs (miRNAs) are emerging as key modulators of plant-pest interactions. In the study, we found that osa-miR162a is induced in response to BPH attack in the seedling stage and tunes rice resistance to the BPH via the α-linolenic acid metabolism pathway as indicated by gas chromatography/liquid chromatography-mass spectrometry analysis. Overexpression of osa-miR162a inhibited the development and growth of the BPH and simultaneously reduced the release of 3-hexenal and 3-hexen-1-ol to block host recognition in the BPH.

Jie ChenQin LiuLongyu YuanWenzhong ShenQingxing ShiGuojun QiTing ChenZhenfei Zhang

J Agric Food Chem; 2023 Jul 26. doi: 10.1021/acs.jafc.3c02637. 

Abstract

The brown planthopper (BPH) is the most serious pest causing yield losses in rice. MicroRNAs (miRNAs) are emerging as key modulators of plant-pest interactions. In the study, we found that osa-miR162a is induced in response to BPH attack in the seedling stage and tunes rice resistance to the BPH via the α-linolenic acid metabolism pathway as indicated by gas chromatography/liquid chromatography-mass spectrometry analysis. Overexpression of osa-miR162a inhibited the development and growth of the BPH and simultaneously reduced the release of 3-hexenal and 3-hexen-1-ol to block host recognition in the BPH. Moreover, knockdown of OsDCL1, which is targeted by osa-miR162a, inhibited α-linolenic acid metabolism to enhance the resistance to the BPH, which was similar to that in miR162a-overexpressing plants. Our study revealed a novel defense mechanism mediated by plant miRNAs developed during the long-term evolution of plant-host interaction, provided new ideas for the identification of rice resistance resources, and promoted a better understanding of pest control.

 

See https://pubmed.ncbi.nlm.nih.gov/37493591/ or https://pubs.acs.org/doi/10.1021/acs.jafc.3c02637

 

Figure: Jie Chen et al. (2023).

Trở lại      In      Số lần xem: 361

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD