Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  10
 Total visitors :  7489771

Research shows that genomics can match plant variety to climate stresses

A new study on the genomic signatures of adaptation in crop plants can help predict how crop varieties respond to stress from their environments. Researchers applied a drought stress to hundreds of different varieties of sorghum plants to test whether genomic analysis could help predict what varieties would continue to thrive under drought. Researchers cataloged the findings in a database that aims to help sorghum breeders with limited resources in developing countries have better predictions of what sorghum varieties will thrive in the environment and in a growing season's forecasted weather.

KANSAS STATE UNIVERSITY, Thursday, July 9, 2015

 

A new study on the genomic signatures of adaptation in crop plants can help predict how crop varieties respond to stress from their environments. Researchers applied a drought stress to hundreds of different varieties of sorghum plants to test whether genomic analysis could help predict what varieties would continue to thrive under drought. Researchers cataloged the findings in a database that aims to help sorghum breeders with limited resources in developing countries have better predictions of what sorghum varieties will thrive in the environment and in a growing season's forecasted weather. 

 

MANHATTAN — A new study led by a Kansas State University geneticist has shown that genomic signatures of adaptation in crop plants can help predict how crop varieties respond to stress from their environments. 

 

It is the first study to document that these genomic signatures of adaptation can help identify plants that will do well under certain stresses, such drought or toxic soils, said Geoff Morris, assistant professor of agronomy at Kansas State University and a researcher affiliated with the university's Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet.
 

Researchers conducted the study with sorghum, one of the oldest and most widely grown cereal grain crops in the world. Sorghum is grown in Africa and Asia as well as in some of the world's harshest crop-growing regions. More than 43,000 sorghum varieties around the world have been collected and stored in crop gene banks, which are centers that serve as repositories for crop diversity.

 

See more: http://www.k-state.edu/media/images/jul15/sorghum.jpg

 

Trở lại      In      Số lần xem: 785

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD