Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  56
 Total visitors :  7657728

A reference-anchored oat linkage map reveals quantitative trait loci conferring adult plant resistance to crown rust (Puccinia coronata f. sp. avenae)

Sources of durable disease resistance are needed to minimize yield losses in cultivated oat caused by crown rust (Puccinia coronata f. sp. avenae). In this study, we developed five oat recombinant inbred line mapping populations to identify sources of adult plant resistance from crosses between five APR donors and Otana, a susceptible variety. The preliminary bulk segregant mapping based on allele frequencies showed two regions in linkage group Mrg21 (Chr4D) that are associated with the APR phenotype in all five populations

Eric S. NazarenoJason FiedlerMarisa E. MillerMelania Figueroa & Shahryar F. Kianian

Theoretical and Applied Genetics October 2022; vol. 135: 3307–3321

 

Figure: Oat (Avena sativa) cultivation.

Key message

We mapped three adult plant resistance (APR) loci on oat chromosomes 4D and 6C and developed flanking KASP/PACE markers for marker-assisted selection and gene pyramiding. Using sequence orthology search and the available oat genomic and transcriptomic data, we surveyed these genomic regions for genes that may control disease resistance.

Abstract

Sources of durable disease resistance are needed to minimize yield losses in cultivated oat caused by crown rust (Puccinia coronata f. sp. avenae). In this study, we developed five oat recombinant inbred line mapping populations to identify sources of adult plant resistance from crosses between five APR donors and Otana, a susceptible variety. The preliminary bulk segregant mapping based on allele frequencies showed two regions in linkage group Mrg21 (Chr4D) that are associated with the APR phenotype in all five populations. Six markers from these regions in Chr4D were converted to high-throughput allele specific PCR assays and were used to genotype all individuals in each population. Simple interval mapping showed two peaks in Chr4D, named QPc.APR-4D.1 and QPc.APR-4D.2, which were detected in the OtanaA/CI4706-2 and OtanaA/CI9416-2 and in the Otana/PI189733, OtanaD/PI260616, and OtanaA/CI8000-4 populations, respectively. These results were validated by mapping two entire populations, Otana/PI189733 and OtanaA/CI9416, genotyped using Illumina HiSeq, in which polymorphisms were called against the OT3098 oat reference genome. Composite interval mapping results confirmed the presence of the two quantitative trait loci (QTL) located on oat chromosome 4D and an additional QTL with a smaller effect located on chromosome 6C. This mapping approach also narrowed down the physical intervals to between 5 and 19 Mb, and indicated that QPc.APR-4D.1, QPc.APR-4D.2, and QPc.APR-6C explained 43.4%, 38.5%, and 21.5% of the phenotypic variation, respectively. In a survey of the gene content of each QTL, several clusters of disease resistance genes that may contribute to APR were found. The allele specific PCR markers developed for these QTL regions would be beneficial for marker-assisted breeding, gene pyramiding, and future cloning of resistance genes from oat.

 

See https://link.springer.com/article/10.1007/s00122-022-04128-6

 

Figure: The symptom of crown rust (Puccinia coronata f. sp. avenae).

Trở lại      In      Số lần xem: 246

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD