Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  10
 Total visitors :  7828788

Analysis of Potato Physiological and Molecular Adaptation in Response to Different Water and Nitrogen Combined Regimes

Water and nitrogen are essential for potato growth and development. We aim to understand how potato adapts to changes in soil water and nitrogen content. Potato plant adaptations to changes in soil moisture and nitrogen levels were analyzed at the physiological and transcriptomic levels in four treatment groups: adequate nitrogen under drought, adequate nitrogen under sufficient irrigation, limited nitrogen under drought, and limited nitrogen under sufficient irrigation.

Wenyuan YanJunhong QinYinqiao JianJiangang LiuChunsong BianLiping Jin

Plants (Basel); 2023 Apr 17; 12(8):1671. doi: 10.3390/plants12081671.

Abstract

Water and nitrogen are essential for potato growth and development. We aim to understand how potato adapts to changes in soil water and nitrogen content. Potato plant adaptations to changes in soil moisture and nitrogen levels were analyzed at the physiological and transcriptomic levels in four treatment groups: adequate nitrogen under drought, adequate nitrogen under sufficient irrigation, limited nitrogen under drought, and limited nitrogen under sufficient irrigation. Many light-capture pigment complex genes and oxygen release complex genes were differentially expressed in leaves when nitrogen levels were increased under drought conditions, and several genes encoding rate-limiting enzymes in the Calvin-Benson-Bassham cycle were up-regulated; furthermore, leaf stomatal conductance decreased, whereas the saturated vapor pressure difference and relative chlorophyll content in the chloroplasts increased. StSP6A, a key gene in potato tuber formation, was down-regulated in response to increased nitrogen application, and the stolon growth time was prolonged. Genes related to root nitrogen metabolism were highly expressed, and protein content in the tuber increased. Weighted gene co-expression network analysis (WGCNA) revealed 32 gene expression modules that responded to changes in water and nitrogen levels. A total of 34 key candidate genes were identified, and a preliminary molecular model of potato responses to alterations in soil water and nitrogen content was constructed.

 

See https://pubmed.ncbi.nlm.nih.gov/37111894/

 

Figure 1

Differentially expressed gene (DEG) identification. (a) Diagram showing the samples compared in this analysis. (b) Distribution of DEGs (FDR < 0.05 and |log2(fold change)| ≥ 1) between treatment groups in two tissues. (c-d) Unique and shared DEGs between treatment groups in leaf tissue (c) and root tissue (d). (e,f) Unique and shared differentially expressed transcription factors (TFs) in leaf tissue (e) and root tissue (f). In the network, the circular node with a specific number represents the protein, and the interconnecting lines represent the source by which protein interactions are derived. Sources of protein interaction were represented with black, pink, green, and blue lines that represent co-expression, experimental data, text mining, and homology, respectively.

 

Trở lại      In      Số lần xem: 43

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD