Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  4
 Total visitors :  8604801

Transcriptome Analysis of Early Lateral Root Formation in Tomato
Sunday, 2024/08/18 | 06:26:25

Aiai ZhangQingmao Shang

Plants (Basel); 2024 Jun 12; 13(12):1620. doi: 10.3390/plants13121620.

Abstract

Lateral roots (LRs) receive signals from the inter-root environment and absorb water and nutrients from the soil. Auxin regulates LR formation, but the mechanism in tomato remains largely unknown. In this study, 'Ailsa Craig' tomato LRs appeared on the third day and were unevenly distributed in primary roots. According to the location of LR occurrence, roots were divided into three equal parts: the shootward part of the root (RB), the middle part of the root (RM), and the tip part of the root (RT). Transverse sections of roots from days 1 to 6 revealed that the number of RB cells and the root diameter were significantly increased compared with RM and RT. Using roots from days 1 to 3, we carried out transcriptome sequencing analysis. Identified genes were classified into 16 co-expression clusters based on K-means, and genes in four associated clusters were highly expressed in RB. These four clusters (3, 5, 8, and 16) were enriched in cellulose metabolism, microtubule, and peptide metabolism pathways, all closely related to LR development. The four clusters contain numerous transcription factors linked to LR development including transcription factors of LATERAL ORGAN BOUNDRIES (LOB) and MADS-box families. Additionally, auxin-related genes GATA23ARF7LBD16EXPIAA4IAA7PIN1PIN2YUC3, and YUC4 were highly expressed in RB tissue. Free IAA content in 3 d RB was notably higher, reaching 3.3-5.5 ng/g, relative to RB in 1 d and 2 d. The LR number was promoted by 0.1 μM of exogenous IAA and inhibited by exogenous NPA. We analyzed the root cell state and auxin signaling module during LR formation. At a certain stage of pericycle cell development, LR initiation is regulated by auxin signaling modules IAA14-ARF7/ARF19-LBD16-CDKA1 and IAA14-ARF7/ARF19-MUS/MUL-XTR6/EXP. Furthermore, as a key regulatory factor, auxin regulates the process of LR initiation and LR primordia (LRP) through different auxin signaling pathway modules.

 

See https://pubmed.ncbi.nlm.nih.gov/38931052/

 

Figure 6. Identification and expression analysis of TFs in clusters 3, 5, 8, and 16. The FPKM of TFs in each cluster were standardized for log2 processing, and heatmaps were drawn. The color represents gene expression; red is up-regulation and blue is down-regulation. Above each heatmap is the name of the cluster, the number of genes, and the number of TFs in the cluster. On the right side is the type of TF family. Only TF types with a large number of TFs are marked in the figure. Expression of TFs in 27 samples was assessed by cluster analysis.

Back      Print      View: 297

[ Other News ]___________________________________________________
  • Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia
  • Increasing plant group productivity through latent genetic variation for cooperation
  • THP9 enhances seed protein content and nitrogen-use efficiency in maize
  • The role of soybean 14-3-3 gene (Glyma05g29080) on white mold resistance and nodulation investigations using CRISPR-Cas9 editing and RNA silencing
  • Progress in Soybean Genetic Transformation Over the Last Decade
  • Climate change challenges plant breeding
  • Breeding for disease resistance in soybean: a global perspective
  • The phosphorylation of AMPKβ1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids
  • Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height
  • Response of Southeast Asian rice root architecture and anatomy phenotypes to drought stress
  • Root Pulling Force Across Drought in Maize Reveals Genotype by Environment Interactions and Candidate Genes
  • Root hair-specific transcriptome reveals response to low phosphorus in Cicer arietinum
  • Protocol for targeted modification of the rice genome using base editing
  • Understanding the Dynamics of Blast Resistance in Rice- Magnaporthe oryzae Interactions
  • Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L.
  • Highly efficient transgene-free genome editing in tobacco using an optimized CRISPR/Cas9 system, pOREU3TR
  • Breeding of Rc Function Restoration Red Rice via CRISPR/Cas9 Mediated Genome Editing
  • Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed
  • Natural allelic variation of GmST05 controlling seed size and quality in soybean
  • Cassava mosaic disease and its management in Southeast Asia

 

Designed & Powered by WEBSO CO.,LTD