Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  60
 Total visitors :  7662424

Bayesian optimization of multivariate genomic prediction models based on secondary traits for improved accuracy gains and phenotyping costs

Multivariate genomic prediction based on secondary traits, such as data from various omics technologies including high-throughput phenotyping (e.g., unmanned aerial vehicle-based remote sensing), has attracted much attention because it offers improved accuracy gains compared with genomic prediction based only on marker genotypes. Although there is a trade-off between accuracy gains and phenotyping costs of secondary traits, no attempt has been made to optimize these trade-offs.

Kosuke Hamazaki & Hiroyoshi Iwata

Theoretical and Applied Genetics January 2022; vol. 135: 35–50

Key message

We propose a novel approach to the Bayesian optimization of multivariate genomic prediction models based on secondary traits to improve accuracy gains and phenotyping costs via efficient Pareto frontier estimation.

Abstract

Multivariate genomic prediction based on secondary traits, such as data from various omics technologies including high-throughput phenotyping (e.g., unmanned aerial vehicle-based remote sensing), has attracted much attention because it offers improved accuracy gains compared with genomic prediction based only on marker genotypes. Although there is a trade-off between accuracy gains and phenotyping costs of secondary traits, no attempt has been made to optimize these trade-offs. In this study, we propose a novel approach to optimize multivariate genomic prediction models for secondary traits measurable at early growth stages for improved accuracy gains and phenotyping costs. The proposed approach employs Bayesian optimization for efficient Pareto frontier estimation, representing the maximum accuracy at a given cost. The proposed approach successfully estimated the optimal secondary trait combinations across a range of costs while providing genomic predictions for only about 20%20% of all possible combinations. The simulation results reflecting the characteristics of each scenario of the simulated target traits showed that the obtained optimal combinations were reasonable. Analysis of real-time target trait data showed that the proposed multivariate genomic prediction model had significantly superior accuracy compared to the univariate genomic prediction model.

 

See https://link.springer.com/article/10.1007/s00122-021-03949-1

Trở lại      In      Số lần xem: 249

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD