Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  29
 Total visitors :  7655690

Combined linkage mapping and association analysis uncovers candidate genes for 25 leaf-related traits across three environments in maize

Leaf morphology and number determine the canopy structure and thus affect crop yield. Herein, the genetic basis and key genes for 25 leaf-related traits, including leaf lengths (LL), leaf widths (LW), and leaf areas (LA) of eight continuous leaves under the tassel, and the number of leaves above the primary ear (LAE), were dissected by using an association panel and a biparental population. Using an intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, 290 quantitative trait loci (QTL) controlling these traits were detected across different locations, among which 115 QTL were individually repeatedly identified in at least two environments.

Wei DaiHong YuKai LiuYujuan ChengxuJiaquan YanChen ZhangNa XiHao LiuChaoyang XiangchenChaoying ZouMinyan ZhangShibin GaoGuangtang PanLanglang Ma & Yaou Shen

Theoretical and Applied Genetics January 2023; vol. 136: 1–14 

Key message

Combined linkage and association analysis revealed five co-localized genetic loci across multiple environments. The key gene Zm00001d026491 was further verified to influence leaf length by candidate gene association analysis.

Abstract

Leaf morphology and number determine the canopy structure and thus affect crop yield. Herein, the genetic basis and key genes for 25 leaf-related traits, including leaf lengths (LL), leaf widths (LW), and leaf areas (LA) of eight continuous leaves under the tassel, and the number of leaves above the primary ear (LAE), were dissected by using an association panel and a biparental population. Using an intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, 290 quantitative trait loci (QTL) controlling these traits were detected across different locations, among which 115 QTL were individually repeatedly identified in at least two environments. Using the association panel, 165 unique significant single-nucleotide polymorphisms (SNPs) were associated with target traits (P < 2.15E-06), of which 35 were separately detected across multiple environments. In total, 42 pleiotropic QTL/SNPs (pQTL/SNPs) were responsible for at least two of the LL, LW, LA, and LAE traits across multiple environments. Combining the QTL mapping and association study, five unique SNPs were located within the confidence intervals of seven QTL, and 77 genes were identified based on the linkage disequilibrium regions of co-localized SNP loci. Gene-based association studies verified that the intragenic variants in the candidate gene Zm00001d026491 influenced LL of the third leaf counted from the top node. These findings will provide vital information to understanding the genetic basis of leaf-related traits and help to cultivate maize varieties with ideal plant architecture.

 

See https://link.springer.com/article/10.1007/s00122-023-04285-2

Trở lại      In      Số lần xem: 126

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD