Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  6
 Total visitors :  8198867

Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat

Previous research using a bread wheat RIL population of the Seri/Babax cross showed that common QTL were associated with cooler canopies under both drought and heat-stressed conditions. A subset of RIL was grown under water-limited and hot-irrigated field environments to test how cooler canopies are related to root development. Eight sisters and the two parents were used in the study with genotypes grouped as COOL or HOT according to their respective QTL for canopy temperature and previous phenotypic data.

R. Suzuky Pinto, Matthew P. Reynolds

Theoretical and Applied Genetics; April 2015, Volume 128, Issue 4, pp 575-585

 

Abstract

Key message

QTL related to cooler canopy temperatures are associated with optimal root distribution whereby roots proliferate at depth under drought or near to surface under hot, irrigated conditions.

 

Abstract

 

Previous research using a bread wheat RIL population of the Seri/Babax cross showed that common QTL were associated with cooler canopies under both drought and heat-stressed conditions. A subset of RIL was grown under water-limited and hot-irrigated field environments to test how cooler canopies are related to root development. Eight sisters and the two parents were used in the study with genotypes grouped as COOL or HOT according to their respective QTL for canopy temperature and previous phenotypic data. Root mass production and residual available soil moisture were measured around anthesis at four depth profiles (from 0 to 120 cm depth). When considering different root profiles, there was a clear interaction of QTL with environment. Under water stress, the COOL genotypes showed a deeper root system allowing the extraction of 35 % more water from the 30–90 cm soil profile. The strategy under heat was to concentrate more roots at the surface, in the 0–60 cm soil layer where water was more available from surface irrigation. Since COOL genotypes showed better agronomic performance, it can be concluded that their QTL are associated with more optimal root distribution in accordance with water availability under the respective stresses. The study demonstrates the importance of root development under both water-limited and hot-irrigated environments, and shows a common genetic basis for adaptation to both stresses that appears to be associated with sensitivity of roots to proliferate where water is available in the soil profile.

 

See: http://link.springer.com/article/10.1007/s00122-015-2453-9

 

 

Trở lại      In      Số lần xem: 908

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD