Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  6
 Total visitors :  7490326

Deciphering evolutionary dynamics of WRKY genes in Arachis species

Cultivated peanut (Arachis hypogaea), a progeny of the cross between A. duranensis and A. ipaensis, is an important oil and protein crop from South America. To date, at least six Arachis genomes have been sequenced. WRKY transcription factors (TFs) play crucial roles in plant growth, development, and response to abiotic and biotic stresses. WRKY TFs have been identified in A. duranensis, A. ipaensis, and A. hypogaea cv. Tifrunner; however, variations in their number and evolutionary patterns across various Arachis spp. remain unclear.

Mingwei ChenMeiran LiLonggang ZhaoHui Song.

BMC Genomics; 2023 Jan 27; 24(1):48. doi: 10.1186/s12864-023-09149-z.

 

Background: Cultivated peanut (Arachis hypogaea), a progeny of the cross between A. duranensis and A. ipaensis, is an important oil and protein crop from South America. To date, at least six Arachis genomes have been sequenced. WRKY transcription factors (TFs) play crucial roles in plant growth, development, and response to abiotic and biotic stresses. WRKY TFs have been identified in A. duranensis, A. ipaensis, and A. hypogaea cv. Tifrunner; however, variations in their number and evolutionary patterns across various Arachis spp. remain unclear.

 

Results: WRKY TFs were identified and compared across different Arachis species, including A. duranensis, A. ipaensis, A. monticola, A. hypogaea cultivars (cv.) Fuhuasheng, A. hypogaea cv. Shitouqi, and A. hypogaea cv. Tifrunner. The results showed that the WRKY TFs underwent dynamic equilibrium between diploid and tetraploid peanut species, characterized by the loss of old WRKY TFs and retention of the new ones. Notably, cultivated peanuts inherited more conserved WRKY orthologs from wild tetraploid peanuts than their wild diploid donors. Analysis of the W-box elements and protein-protein interactions revealed that different domestication processes affected WRKY evolution across cultivated peanut varieties. WRKY TFs of A. hypogaea cv. Fuhuasheng and Shitouqi exhibited a similar domestication process, while those of cv. Tifrunner of the same species underwent a different domestication process based on protein-protein interaction analysis.

 

Conclusions: This study provides new insights into the evolution of WRKY TFs in Arachis spp.

 

See https://pubmed.ncbi.nlm.nih.gov/36707767/

 

Fig. 1: Comparison of WRKY genes across various Arachis species. A Number of WRKY genes across various Arachis species. B Number of WRKY genes across various Arachis sub-genomes. The excluded WRKY genes from Arachis monticola and A. hypogaea cv. Fuhuasheng due to lack of location information. C Number of WRKY genes in groups I, II, and III across various Arachis species. Statistical analyses were executed using the Chi-square test at p ≦ 0.05.

Trở lại      In      Số lần xem: 178

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD