Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  40
 Total visitors :  7653871

Engineering apomixis in crops

Apomixis is an asexual mode of reproduction through seeds where progeny are clones of the mother plants. Naturally apomictic modes of reproduction are found in hundreds of plant genera distributed across more than 30 plant families, but are absent in major crop plants. Apomixis has the potential to be a breakthrough technology by allowing the propagation through seed of any genotype, including F1 hybrids

Alexander MahlandtDipesh Kumar Singh & Raphael Mercier

Theoretical and Applied Genetics June 2023; vol. 136, Article number: 131

Abstract

Apomixis is an asexual mode of reproduction through seeds where progeny are clones of the mother plants. Naturally apomictic modes of reproduction are found in hundreds of plant genera distributed across more than 30 plant families, but are absent in major crop plants. Apomixis has the potential to be a breakthrough technology by allowing the propagation through seed of any genotype, including F1 hybrids. Here, we have summarized the recent progress toward synthetic apomixis, where combining targeted modifications of both the meiosis and fertilization processes leads to the production of clonal seeds at high frequencies. Despite some remaining challenges, the technology has approached a level of maturity that allows its consideration for application in the field.

 

See https://link.springer.com/article/10.1007/s00122-023-04357-3

 

Fig.1: Engineering apomeiosis and parthenogenesis. Mutations in three meiotic genes (MiMe) alter crucial stages of meiosis to result in a mitotic-like division of chromosomes, mimicking and providing a tool to implement apomeiosis (A). Embryogenesis in many plants results from fertilization of the female-derived ovule and central cell by the male-derived pollen to give rise to a diploid zygote and triploid endosperm (B, left). Prior to fertilization, BBM1 and PAR are expressed in the male gamete; redirecting their expression to the ovule can result in the formation of haploid zygotes (B, right). Alternatively, mutations in MTL/PLA1/NLD, DMP, or CENH3 can hinder fertilization by disrupting one parental gamete contribution, and can produce haploid zygotes (C). By pairing MiMe with male expressed BBM1/PAR or mutations in MTL/PLA1/NLD, DMP, or CENH3, clonal progeny can be obtained that represent synthetic apomicts (D). Figure created with BioRender.com

 

Trở lại      In      Số lần xem: 218

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD