Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  12
 Total visitors :  7643652

Genetic dissection of Brassica napus seed vigor after aging

Seed vigor is an important trait in crop breeding; however, the underlying molecular regulatory mechanisms governing this trait in rapeseed remain largely unknown. In the present study, vigor-related traits were analyzed in seeds from a doubled haploid (DH) rapeseed (Brassica napus) population grown in 2 different environments using seeds stored for 7, 5, and 3 years under natural storage conditions.

Yiran DingDalin HouYongtai YinKang ChenJianjie HeShuxiang YanHuaixin LiYiyi XiongWeixian Zhou & Maoteng Li

Theoretical and Applied Genetics; June 2023; vol.137; article 141

Key message

Stable and novel QTLs that affect seed vigor under different storage durations were discovered, and BnaOLE4, located in the interval of cqSW-C2-3, increased seed vigor after aging.

Abstract

Seed vigor is an important trait in crop breeding; however, the underlying molecular regulatory mechanisms governing this trait in rapeseed remain largely unknown. In the present study, vigor-related traits were analyzed in seeds from a doubled haploid (DH) rapeseed (Brassica napus) population grown in 2 different environments using seeds stored for 7, 5, and 3 years under natural storage conditions. A total of 229 quantitative trait loci (QTLs) were identified and were found to explain 3.78%–17.22% of the phenotypic variance for seed vigor-related traits after aging. We further demonstrated that seed vigor-related traits were positively correlated with oil content (OC) but negatively correlated with unsaturated fatty acids (FAs). Some pleiotropic QTLs that collectively regulate OC, FAs, and seed vigor, such as uq.A8uq.A3-2uq.A9-2, and uq.C3-1, were identified. The transcriptomic results from extreme pools of DH lines with distinct seed vigor phenotypes during accelerated aging revealed that various biological pathways and metabolic processes (such as glutathione metabolism and reactive oxygen species) were involved in seed vigor. Through integration of QTL analysis and RNA-Seq, a regulatory network for the control of seed vigor was constructed. Importantly, a candidate (BnaOLE4) from cqSW-C2-3 was selected for functional analysis, and transgenic lines overexpressing BnaOLE4 showed increased seed vigor after artificial aging. Collectively, these results provide novel information on QTL and potential candidate genes for molecular breeding for improved seed storability.

 

See https://link.springer.com/article/10.1007/s00122-024-04648-3

 

Trở lại      In      Số lần xem: 47

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD