Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  10
 Total visitors :  7480146

Genome editing by introduction of Cas9/sgRNA into plant cells using temperature-controlled atmospheric pressure plasma

Previously, we developed a technique to introduce a superfolder green fluorescent protein (sGFP) fusion protein directly into plant cells using atmospheric-pressure plasma. In this study, we attempted genome editing using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9) system using this protein introduction technique. As an experimental system to evaluate genome editing, we utilized transgenic reporter plants carrying the reporter genes L-(I-SceI)-UC and sGFP-waxy-HPT. The L-(I-SceI)-UC system allowed the detection of successful genome editing by measuring the chemiluminescent signal observed upon re-functionalization of the luciferase (LUC) gene following genome editing.

Yuki Yanagawa, Yuma Suenaga, Yusuke Iijima, Masaki Endo, Naoko Sanada, Etsuko Katoh, Seiichi Toki, Akitoshi Okino, Ichiro Mitsuhara

PLOS ONE Published: February 16, 2023; https://doi.org/10.1371/journal.pone.0281767

Abstract

Previously, we developed a technique to introduce a superfolder green fluorescent protein (sGFP) fusion protein directly into plant cells using atmospheric-pressure plasma. In this study, we attempted genome editing using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9) system using this protein introduction technique. As an experimental system to evaluate genome editing, we utilized transgenic reporter plants carrying the reporter genes L-(I-SceI)-UC and sGFP-waxy-HPT. The L-(I-SceI)-UC system allowed the detection of successful genome editing by measuring the chemiluminescent signal observed upon re-functionalization of the luciferase (LUC) gene following genome editing. Similarly, the sGFP-waxy-HPT system conferred hygromycin resistance caused by hygromycin phosphotransferase (HPT) during genome editing. CRISPR/Cas9 ribonucleoproteins targeting these reporter genes were directly introduced into rice calli or tobacco leaf pieces after treatment with N2 and/or CO2 plasma. Cultivation of the treated rice calli on a suitable medium plate produced the luminescence signal, which was not observed in the negative control. Four types of genome-edited sequences were obtained upon sequencing the reporter genes of genome-edited candidate calli. sGFP-waxy-HPT-carrying tobacco cells exhibited hygromycin resistance during genome editing. After repeated cultivation of the treated tobacco leaf pieces on a regeneration medium plate, the calli were observed with leaf pieces. A green callus that was hygromycin-resistant was harvested, and a genome-edited sequence in the tobacco reporter gene was confirmed. As direct introduction of the Cas9/sgRNA (single guide RNA) complex using plasma enables genome editing in plants without any DNA introduction, this method is expected to be optimized for many plant species and may be widely applied for plant breeding in the future.

 

See https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281767

 

Trở lại      In      Số lần xem: 209

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD