Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  51
 Total visitors :  7656430

Genotyping marker density and prediction models effects in long-term breeding schemes of cross-pollinated crops

Reductions of genotyping marker density have been extensively evaluated as potential strategies to reduce the genotyping costs of genomic selection (GS). Low-density marker panels are appealing in GS because they entail lower multicollinearity and computing time and allow more individuals to be genotyped for the same cost. However, statistical models used in GS are usually evaluated with empirical data, using "static" training sets and populations.

Júlio César DoValeHumberto Fanelli CarvalhoFelipe Sabadin & Roberto Fritsche-Neto

Theoretical and Applied Genetics December 2022; vol.135: 4523–4539

Figure: Genome assemblies of maize lines Mo17 and W22: Extensive intraspecific variation, and resource for functional biology (Nature Genetics, August 10, 2018/in Plant Science Research Weekly /by Mary Williams)

Key Message

In genomic recurrent selection, the more markers, the better because they buffer the linkage disequilibrium losses caused by recombination over cycles, and consequently, provide higher responses to selection.

Abstract

Reductions of genotyping marker density have been extensively evaluated as potential strategies to reduce the genotyping costs of genomic selection (GS). Low-density marker panels are appealing in GS because they entail lower multicollinearity and computing time and allow more individuals to be genotyped for the same cost. However, statistical models used in GS are usually evaluated with empirical data, using "static" training sets and populations. This may be adequate for making predictions during a breeding program's initial cycles but not for the long-term. Moreover, studies that focus on long selective breeding cycles generally do not consider GS models with the effect of dominance, which is particularly important for breeding outcomes in cross-pollinated crops. Hence, dominance effects are important and unexplored in GS for long-term programs involving allogamous species. To address it, we employed two approaches: analysis of empirical maize datasets and simulations of long-term breeding applying phenotypic and genomic recurrent selection (intrapopulation and reciprocal schemes). In both schemes, we simulated twenty breeding cycles and assessed the effect of marker density reduction on the population mean, the best crosses, additive variance, selective accuracy, and response to selection with models [additive, additive-dominant, general (GCA), and this plus specific combining ability (GCA + SCA)]. Our results indicate that marker reduction based on linkage disequilibrium levels provides useful predictions only within a cycle, as accuracy significantly decreases over cycles. In the long-term, without training set updating, high-marker density provides the best responses to selection. The model to be used depends on the breeding scheme: additive for intrapopulation and additive-dominant or GCA + SCA for reciprocal.

 

See https://link.springer.com/article/10.1007/s00122-022-04236-3

 

Trở lại      In      Số lần xem: 126

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD