Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  54
 Total visitors :  7654222

High-resolution mapping of SrTm4, a recessive resistance gene to wheat stem rust

Race Ug99 of Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem (or black) rust is one of the most serious threats to global wheat production. The identification, mapping, and deployment of effective stem rust resistance (Sr) genes are critical to reduce this threat. In this study, we generated SrTm4 monogenic lines and found that this gene confers resistance to North American and Chinese Pgt races.  Using a large mapping population (9522 gametes), we mapped SrTm4 within a 0.06 cM interval flanked by marker loci CS4211 and 130K1519, which corresponds to a 1.0-Mb region in the Chinese Spring reference genome v2.1.

Hongna LiJing LuoWenjun ZhangLei HuaKun LiJian WangBinyang XuChen YangGuiping WangMatthew N. RouseJorge Dubcovsky & Shisheng Chen

 

Theoretical and Applied Genetics May 2023; vol. 136, Article number: 120 

 

 

Photo: ©FAO/Luc Genot

Key message

The diploid wheat recessive stem rust resistance gene SrTm4 was fine-mapped to a 754-kb region on chromosome arm 2AmL and potential candidate genes were identified.

Abstract

Race Ug99 of Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem (or black) rust is one of the most serious threats to global wheat production. The identification, mapping, and deployment of effective stem rust resistance (Sr) genes are critical to reduce this threat. In this study, we generated SrTm4 monogenic lines and found that this gene confers resistance to North American and Chinese Pgt races. Using a large mapping population (9522 gametes), we mapped SrTm4 within a 0.06 cM interval flanked by marker loci CS4211 and 130K1519, which corresponds to a 1.0-Mb region in the Chinese Spring reference genome v2.1. A physical map of the SrTm4 region was constructed with 11 overlapping BACs from the resistant Triticum monococcum PI 306540. Comparison of the 754-kb physical map with the genomic sequence of Chinese Spring and a discontinuous BAC sequence of DV92 revealed a 593-kb chromosomal inversion in PI 306540. Within the candidate region, we identified an L-type lectin-domain containing receptor kinase (LLK1), which was disrupted by the proximal inversion breakpoint, as a potential candidate gene. Two diagnostic dominant markers were developed to detect the inversion breakpoints. In a survey of T. monococcum accessions, we identified 10 domesticated T. monococcum subsp. monococcum genotypes, mainly from the Balkans, carrying the inversion and showing similar mesothetic resistant infection types against Pgt races. The high-density map and tightly linked molecular markers developed in this study are useful tools to accelerate the deployment of SrTm4-mediated resistance in wheat breeding programs.

 

See https://link.springer.com/article/10.1007/s00122-023-04369-z

 

Figure 2: High-density genetic maps for stem rust resistance locus SrTm4. a Genomic region containing SrTm4 (marked in gray) on the long arm of wheat chromosome 2A. b Genetic map based on 811 F2 plants and 14 molecular markers; c High-density genetic map based on 4761 F2 plants and 10 molecular markers; d Physical map of Chinese Spring. Coordinates are based on CS RefSeq v2.1

Trở lại      In      Số lần xem: 396

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD