Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  47
 Total visitors :  7664823

Identification and molecular mapping of Rps14, a gene conferring broad-spectrum resistance to Phytophthora sojae in soybean

Phytophthora sojae is the causative agent for Phytophthora root and stem rot in soybean [Glycine max (L.) Merr.] and can be managed by deployment of resistance to P. sojae (Rps) genes. PI 340,029 is a soybean landrace carrying broad-spectrum resistance to the pathogen. Analysis of an F2 population derived from a cross between PI 340,029 and a susceptible cultivar ‘Williams’ reveals that the resistance to P. sojae race 1 is conferred by a single gene,

Liyang ChenWeidong WangJieqing PingJoshua C. FitzgeraldGuohong CaiChancelor B. ClarkRajat Aggarwal & Jianxin Ma

Theoretical and Applied GeneticsDecember 2021; vol. 134:  3863–3872

 

Figure: Symptom caused by Phytophthora sojae in soybean

Key message

A soybean landrace carries broad-spectrum resistance to Phytophthora sojae, which is conferred by a single gene, designated Rps14, on the short arm of chromosome 3.

Abstract

Phytophthora sojae is the causative agent for Phytophthora root and stem rot in soybean [Glycine max (L.) Merr.] and can be managed by deployment of resistance to P. sojae (Rps) genes. PI 340,029 is a soybean landrace carrying broad-spectrum resistance to the pathogen. Analysis of an F2 population derived from a cross between PI 340,029 and a susceptible cultivar ‘Williams’ reveals that the resistance to P. sojae race 1 is conferred by a single gene, designated Rps14, which was initially mapped to a 4.5-cM region on the short arm of chromosome 3 by bulked segregant analysis (BSA), and subsequently narrowed to a 1.48 cM region corresponding to 229-kb in the Williams 82 reference genome (Wm82 v2.a1), using F3:4 families derived from the F2 population. Further analysis indicates that the broad-spectrum resistance carried by PI 340,029 is fully attributable to Rps14. The genomic sequences corresponding to the defined Rps14 region from a set of diverse soybean varieties exhibit drastic NBS-LRR gene copy number variation, ranging from 3 to 17 copies. Ultimate isolation of Rps14 would be critical for precise selection and deployment of the gene for soybean protection.

 

See: https://link.springer.com/article/10.1007/s00122-021-03933-9

Trở lại      In      Số lần xem: 229

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD