Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  48
 Total visitors :  7651100

Identification of QTLs for resistance to 10 pathotypes of Plasmodiophora brassicae in Brassica oleracea cultivar ECD11 through genotyping-by-sequencing

Clubroot caused by Plasmodiophora brassicae is an important disease in brassica crops. Managing clubroot disease of canola on the Canadian prairie is challenging due to the continuous emergence of new pathotypes. Brassica oleracea is considered a major source of quantitative resistance to clubroot. Genotyping-by-sequencing (GBS) was performed in the parental lines; T010000DH3 (susceptible), ECD11 (resistant) and 124 BC1 plants.

Md. Masud Karim, Fengqun Yu

Theoretical and Applied Genetics; December (2023) 136:249

Key message

Two major quantitative trait loci (QTLs) and five minor QTLs for 10 pathotypes were identified on chromosomes C01, C03, C04 and C08 through genotyping-by-sequencing from Brassica oleracea.

Abstract

Clubroot caused by Plasmodiophora brassicae is an important disease in brassica crops. Managing clubroot disease of canola on the Canadian prairie is challenging due to the continuous emergence of new pathotypes. Brassica oleracea is considered a major source of quantitative resistance to clubroot. Genotyping-by-sequencing (GBS) was performed in the parental lines; T010000DH3 (susceptible), ECD11 (resistant) and 124 BC1 plants. A total of 4769 high-quality polymorphic SNP loci were obtained and distributed on 9 chromosomes of B. oleracea. Evaluation of 124 BC1S1 lines for resistance to 10 pathotypes: 3A, 2B, 5C, 3D, 5G, 3H, 8J, 5K, 5L and 3O of P. brassicae, was carried out. Seven QTLs, 5 originating from ECD11 and 2 from T010000DH3, were detected. One major QTL designated as Rcr_C03-1 on C03 contributed 16.0–65.6% of phenotypic variation explained (PVE) for 8 pathotypes: 2B, 5C, 5G, 3H, 8J, 5K, 5L and 3O. Another major QTL designated as Rcr_C08-1 on C08 contributed 8.3 and 23.5% PVE for resistance to 8J and 5K, respectively. Five minor QTLs designated as Rcr_C01-1, Rcr_C03-2, Rcr_C03-3, Rcr_C04-1 and Rcr_C08-2 were detected on chromosomes C01, C03, C04 and C08 that contributed 8.3–23.5% PVE for 5 pathotypes each of 3A, 2B, 3D, 8J and 5K. There were 1, 10 and 4 genes encoding TIR-NBS-LRR/CC-NBS-LRR class disease resistance proteins in the Rcr_C01-1Rcr_C03-1 and Rcr_C08-1 flanking regions. The syntenic regions of the two major QTLs Rcr_C03-1 and Rcr_C08-1 in the B. rapa genome ‘Chiifu’ were searched.

 

See https://link.springer.com/article/10.1007/s00122-023-04483-y

 

Figure 1; Distribution of disease severity indexes (DSIs) of 124 BC1S1 population derived from DH3 × (DH3 × ECD11) against 10 pathotypes of Plasmodiophora brassicae. Arrows pointed the position of parental and F1 plants

 

Trở lại      In      Số lần xem: 174

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD