Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  64
 Total visitors :  7653629

Identification of novel sex determination loci in Japanese weedy melon

Sex expression contributes to fruit quality and yield in the Cucurbitaceae. In melon, orchestrated regulation by sex determination genes explains the mechanism of sex expression, resulting in a great variety of sexual morphologies. In this study, we examined the Japanese weedy melon UT1, which does not follow the reported model of sex expression. We conducted QTL analysis using F2 plants for flower sex on the main stem and the lateral branch and mapped “occurrence of pistil-bearing flower on the main stem” locus on Chr. 3 (Opbf3.1)

Akito NashikiHiroki MatsuoKota TakanoFauziatul FitriyahSachiko IsobeKenta Shirasawa & Yosuke Yoshioka

Theoretical and Applied Genetics volume 136, Article number: 136

Key message

Japanese weedy melon exhibits unique sex expression with interactions between previously reported sex determination genes and two novel loci.

Abstract

Sex expression contributes to fruit quality and yield in the Cucurbitaceae. In melon, orchestrated regulation by sex determination genes explains the mechanism of sex expression, resulting in a great variety of sexual morphologies. In this study, we examined the Japanese weedy melon UT1, which does not follow the reported model of sex expression. We conducted QTL analysis using F2 plants for flower sex on the main stem and the lateral branch and mapped “occurrence of pistil-bearing flower on the main stem” locus on Chr. 3 (Opbf3.1) and “type of pistil-bearing flower” (female or bisexual) loci on Chr. 2 (tpbf2.1) and Chr. 8 (tpbf8.1). The Opbf3.1 included the known sex determination gene CmACS11. Sequence comparison of CmACS11 between parental lines revealed three nonsynonymous SNPs. A CAPS marker developed from one of the SNPs was closely linked to the occurrence of pistil-bearing flowers on the main stem in two F2 populations with different genetic backgrounds. The UT1 allele on Opbf3.1 was dominant in F1 lines from crosses between UT1 and diverse cultivars and breeding lines. This study suggests that Opbf3.1 and tpbf8.1 may promote the development of pistil and stamen primordia by inhibiting CmWIP1 and CmACS-7 functions, respectively, making the UT1 plants hermaphrodite. The results of this study provide new insights into the molecular mechanisms of sex determination in melons and considerations for the application of femaleness in melon breeding.

 

See https://link.springer.com/article/10.1007/s00122-023-04381-3

 

 

Trở lại      In      Số lần xem: 177

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD