Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  52
 Total visitors :  7659391

Impact of multiple selective breeding programs on genetic diversity in soybean germplasm

From the domestication of wild soybean (Glycine soja Sieb. & Zucc.), over 3,000 years ago, to the modern soybean (Glycine max L. Merr) cultivars that provide much of the world’s oil and protein, soybean populations have undergone fundamental changes. We evaluated the molecular impact of breeding and selection using 391 soybean accessions including US cultivars and their progenitors from the USDA Soybean Germplasm Collection (CGP),

João Paulo Gomes VianaYuanjin FangArián AvalosQijian SongRandall Nelson & Matthew E. Hudson

Theoretical and Applied Genetics May 2022; vol. 135: 1591–1602

Key message

Independent soybean breeding programs shape genetic diversity from unimproved germplasm to modern cultivars in similar ways, but distinct breeding populations retain unique genetic variation, preserving additional diversity.

Abstract

From the domestication of wild soybean (Glycine soja Sieb. & Zucc.), over 3,000 years ago, to the modern soybean (Glycine max L. Merr) cultivars that provide much of the world’s oil and protein, soybean populations have undergone fundamental changes. We evaluated the molecular impact of breeding and selection using 391 soybean accessions including US cultivars and their progenitors from the USDA Soybean Germplasm Collection (CGP), plus two new populations specifically developed to increase genetic diversity and high yield in two alternative gene pools: one derived from exotic G. max germplasm (AGP) and one derived from G. soja (SGP). Reduction in nucleotide genetic diversity (π) was observed with selection within gene pools, but artificial selection in the AGP maintained more diversity than in the CGP. The highest FST levels were seen between ancestral and elite lines in all gene pools, but specific nucleotide-level patterns varied between gene pools. Population structure analyses support that independent selection resulted in high-yielding elite lines with similar allelic compositions in the AGP and CGP. SGP, however, produced elite progeny that were well differentiated from, but lower yielding than, CGP elites. Both the AGP and SGP retained a significant number of private alleles that are absent in CGP. We conclude that the genomic diversity shaped by multiple selective breeding programs can result in gene pools of highly productive elite lines with similar allelic compositions in a genome-wide perspective. Breeding programs with different ancestral lines, however, can retain private alleles representing unique genetic diversity.

 

See: https://link.springer.com/article/10.1007/s00122-022-04056-5

 

Trở lại      In      Số lần xem: 216

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD