Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  54
 Total visitors :  7653339

Improving blast resistance of maintainer line DRR 9B by transferring broad spectrum resistance gene Pi2 by marker assisted selection in rice

Hybrid rice technology offers great promise to further enhance rice production and productivity for global food security. Improving hybrid rice parental lines is the first step in developing heterotic rice hybrids. To improve resistance against blast disease, a maintainer line DRR 9B was fortified with a major broad-spectrum blast resistance gene Pi2 through marker-assisted selection. The rice blast caused by Magnaporthe oryzae is a major disease and can cause severe yield losses upto 100%.

Arun Kumar SinghRevathi PonnuswamyM Srinivas PrasadR M SundaramA S Hari PrasadP SenguttuvelK B Kempa RajuK Sruthi.

Physiol Mol Biol Plants; 2023 Feb; 29(2):253-262. doi: 10.1007/s12298-023-01291-y.

Abstract

Hybrid rice technology offers great promise to further enhance rice production and productivity for global food security. Improving hybrid rice parental lines is the first step in developing heterotic rice hybrids. To improve resistance against blast disease, a maintainer line DRR 9B was fortified with a major broad-spectrum blast resistance gene Pi2 through marker-assisted selection. The rice blast caused by Magnaporthe oryzae is a major disease and can cause severe yield losses upto 100%. The NILs of Samba Mahsuri namely BA-23-11-89-12-168 possessing Pi2 was utilized as a donor parent. The PCR-based molecular marker tightly linked to Pi2 gene was used for the foreground selection at BC1F1 generation. The molecular marker tightly linked to the major fertility restorer gene Rf4 was used for negative selection (i.e., selection of plants possessing non fertility restoring alleles) at BC1F1 generation to identify maintainer lines. The positive plants with Rf4 gene were added to the restorer pool for restorer line development. At each stage, MAS for Pi2 coupled with stringent phenotypic selection for agro-morphological and grain quality traits were exercised. At BC1F3 generation, one hundred families were screened against blast disease at uniform blast nursery (UBN) and selected resistant lines were advanced to next generations. In the BC1F5 generation plants were subjected to agro-morphological evaluation for yield and yield-contributing traits. The selected plants at BC1F5 generation were crossed with DRR 9A to assess the maintainer ability of blast resistance lines and for further CMS line conversion for hybrid rice breeding for developing blast resistance rice hybrids.

 

See https://pubmed.ncbi.nlm.nih.gov/36819122/

 

Fig. 4: Frequency distribution of yield and yield related traits in BC1F5 lines derived from DRR 9B × Improved Samba Mahsuri

 

Trở lại      In      Số lần xem: 336

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD