Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  67
 Total visitors :  7657509

Mutation in BrGGL7 gene encoding a GDSL esterase / lipase causes male sterility in Chinese cabbage (Brassica rapa L. ssp. pekinensis)

The application of a male-sterile line is an ideal approach of hybrid seed production in Chinese cabbage. In this study, we obtained a male-sterile mutant (ftms1) from the double haploid line ‘FT’ using ethyl methane sulfonate (EMS) mutagenesis. The mutant was completely sterile due to abnormal enlargement and vacuolization of the tapetum cells. A single recessive nuclear gene was found to control male sterility in the mutant, while MutMap and KASP analyses identified BraA05g022470.3C (BrGGL7),

Ying ZhaoShengnan HuangJiaqi ZouShiyao DongNan Wang & Hui Feng

Theoretical and Applied Genetics October 2022; vol. 135: 3323–3335

Key message

MutMap and KASP analyses revealed that the BrGGL7 gene is responsible for the male-sterile trait of ftms1 in Chinese cabbage, with functional verification in Arabidopsis.

Abstract

The application of a male-sterile line is an ideal approach of hybrid seed production in Chinese cabbage. In this study, we obtained a male-sterile mutant (ftms1) from the double haploid line ‘FT’ using ethyl methane sulfonate (EMS) mutagenesis. The mutant was completely sterile due to abnormal enlargement and vacuolization of the tapetum cells. A single recessive nuclear gene was found to control male sterility in the mutant, while MutMap and KASP analyses identified BraA05g022470.3C (BrGGL7), which encodes a GDSL esterase / lipase, as the candidate mutant gene. A single nucleotide substitution from C to T occurred within the domain of BrGGL7 in ftms1, resulting in premature translation termination in the fourth exon. Meanwhile, qRT-PCR analysis indicated that BrGGL7 was prominently expressed in the anthers, and expression was greater in the wild-type ‘FT’ than ftms1. Genetic complementation of the orthologous Arabidopsis ggl7 mutant further confirmed the role of BrGGL7 in pollen development. These findings suggest that BrGGL7 plays a fundamental role in pollen formation, providing important insight into the molecular mechanisms underlying male sterility in Chinese cabbage.

 

See https://link.springer.com/article/10.1007/s00122-022-04165-1

Trở lại      In      Số lần xem: 167

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD