Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  52
 Total visitors :  7651081

OsMAPK6 positively regulates rice cold tolerance at seedling stage via phosphorylating and stabilizing OsICE1 and OsIPA1

Rice is a chilling-sensitive plant, and extremely low temperatures seriously decrease rice production. Several genes involved in chilling stress have been reported in rice; however, the chilling signaling in rice remains largely unknown. Here, we investigated the chilling tolerance phenotype of overexpression of constitutive active OsMAPK6 (CAMAPK6-OE) and OsMAPK6 mutant dsg1, and demonstrated that OsMAPK6 positively regulated rice chilling tolerance

Jiali LiuJiaxin LiuMingliang HeChuanzhong ZhangYingxiang LiuXiufeng LiZhenyu WangXin JinJingjing SuiWenyan ZhouQingyun Bu & Xiaojie Tian

Theoretical and Applied Genetics; Published: 16 December 2023; volume 137, 10 (2024)

Abstract

Rice is a chilling-sensitive plant, and extremely low temperatures seriously decrease rice production. Several genes involved in chilling stress have been reported in rice; however, the chilling signaling in rice remains largely unknown. Here, we investigated the chilling tolerance phenotype of overexpression of constitutive active OsMAPK6 (CAMAPK6-OE) and OsMAPK6 mutant dsg1, and demonstrated that OsMAPK6 positively regulated rice chilling tolerance. It was shown that, under cold stress, the survival rate of dsg1 was significantly lower than that of WT, whereas CAMAPK6-OE display higher survival rate than WT. Physiological assays indicate that ion leakage and dead cell in dsg1 was much more severe than those in WT and CAMAPK6-OE. Consistently, expression of chilling responsive genes in dsg1, including OsCBFs and OsTPP1, was significantly lower than that of in WT and CAMAPK6-OE. Biochemical analyses revealed that chilling stress promotes phosphorylation of OsMAPK6. Besides, we found that OsMAPK6 interacts with and phosphorylates two key regulators in rice cold signaling, OsIPA1 and OsICE1, and then enhance their protein stability. Overall, our results revealed a cold-induced OsMAPK6-OsICE1/OsIPA1 signaling cascade by which OsMAPK6 was involved in rice chilling tolerance, which provides novel insights to understand rice cold response at seedling stage.

 

See https://link.springer.com/article/10.1007/s00122-023-04506-8

 

Trở lại      In      Số lần xem: 174

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD