Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  7
 Total visitors :  7683976

OsSCYL2 is Involved in Regulating ABA Signaling-Mediated Seed Germination in Rice

Seed germination represents a multifaceted biological process influenced by various intrinsic and extrinsic factors. In the present study, our investigation unveiled the regulatory role of OsSCYL2, a gene identified as a facilitator of seed germination in rice. Notably, the germination kinetics of OsSCYL2-overexpressing seeds surpassed those of their wild-type counterparts, indicating the potency of OsSCYL2 in enhancing this developmental process. Moreover, qRT-PCR results showed that OsSCYL2 was consistently expressed throughout the germination process in rice.

Minyan XuWei ZhangYuhuan JiaoQing YangMeng ChenHu ChengBeijiu ChengXin Zhang

Plants (Basel); 2024 Apr 12; 13(8):1088. doi: 10.3390/plants13081088.

Abstract

Seed germination represents a multifaceted biological process influenced by various intrinsic and extrinsic factors. In the present study, our investigation unveiled the regulatory role of OsSCYL2, a gene identified as a facilitator of seed germination in rice. Notably, the germination kinetics of OsSCYL2-overexpressing seeds surpassed those of their wild-type counterparts, indicating the potency of OsSCYL2 in enhancing this developmental process. Moreover, qRT-PCR results showed that OsSCYL2 was consistently expressed throughout the germination process in rice. Exogenous application of ABA on seeds and seedlings underscored the sensitivity of OsSCYL2 to ABA during both seed germination initiation and post-germination growth phases. Transcriptomic profiling following OsSCYL2 overexpression revealed profound alterations in metabolic pathways, MAPK signaling cascades, and phytohormone-mediated signal transduction pathways, with 15 genes related to the ABA pathways exhibiting significant expression changes. Complementary in vivo and in vitro assays unveiled the physical interaction between OsSCYL2 and TOR, thereby implicating OsSCYL2 in the negative modulation of ABA-responsive genes and its consequential impact on seed germination dynamics. This study elucidated novel insights into the function of OsSCYL2 in regulating the germination process of rice seeds through the modulation of ABA signaling pathways, thereby enhancing the understanding of the functional significance of the SCYL protein family in plant physiological processes.

 

See https://pubmed.ncbi.nlm.nih.gov/38674497/

 

Figure 1. Bioinformatics analysis of OsSCYL2. (A) protein structure analysis of OsSCYL2. (B) The analysis of cis-elements in the promoter regions of OsSCYL2. (C) Heatmap of OsSCYL2 expression in different treatments.

Trở lại      In      Số lần xem: 94

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD