Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  55
 Total visitors :  7652076

Pineapple Genome Unlocked; Gives Insight into Photosynthesis in Drought Tolerant Plants

Pineapple has been cultivated for more than 6,000 years, thriving in water-starved environments. To understand how pineapples grow to be juicy under such conditions, researchers at the University of Illinois at Urbana-Champaign took a closer look at the plant's genes and genetic pathways.

Pineapple has been cultivated for more than 6,000 years, thriving in water-starved environments. To understand how pineapples grow to be juicy under such conditions, researchers at the University of Illinois at Urbana-Champaign took a closer look at the plant's genes and genetic pathways.

 

The researchers, led by biology professor Ray Ming, found that pineapple share ancestors with sorghum and rice. Like many plants, the ancestors of pineapple experienced multiple doublings of their genomes, so the researchers tracked the remnants of these "whole-genome duplications" to trace the plant's evolutionary history.

 

The team found that pineapple uses a special type of photosynthesis called crassulacean acid metabolism (CAM), while most plants use C3 photosynthesis. Ming said that CAM plants use only 20 percent of the water used by typical C3 plants, and CAM plants can grow in dry, marginal lands that are unsuited for most plants. The genome revealed that some genes that contribute to CAM photosynthesis are regulated by the plant's circadian clock genes, which allow plants to differentiate day and night and adjust their metabolism accordingly. "This is the first time scientists have found a link between regulatory elements of CAM photosynthesis genes and circadian clock regulation," Ming said.

 

For more information, read the news release at the Illinois News Bureau.

Trở lại      In      Số lần xem: 373

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD