Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  42
 Total visitors :  7656054

Scientists Use Recombineering to Initiate Site-Directed Mutagenesis

Site-directed mutagenesis (SDM) is used to study the resulting translation product for functional characterization. Meanwhile, homologous recombination (HR) is a process where homologous DNA fragments exchanges nucleotides to repair DNA breaks. This mechanism was eventually used to modify plasmids and is now called recombineering.

Site-directed mutagenesis (SDM) is used to study the resulting translation product for functional characterization. Meanwhile, homologous recombination (HR) is a process where homologous DNA fragments exchanges nucleotides to repair DNA breaks. This mechanism was eventually used to modify plasmids and is now called recombineering.

 

The research team led by Ashutosh Trehan from the University of Turku in Finland presents a single-step method, called REPLACR-mutagenesis (Recombineering of Ends of linearised PLAsmids after PCR), for generating site-directed modifications in plasmids by in vivo recombineering. REPLACR-mutagenesis only involves inserting PCR products into bacteria expressing recombineering proteins.

 

In REPLACR mutagenesis, primers with the desired mutation are designed to target a specific region in the original vector. A linear PCR product with both ends containing similar sequences is then generated. Bacteria expressing the recombineering proteins are transformed with the PCR product and recombination takes place inside the bacteria, yielding a circular plasmid containing the desired mutation.

 

For more on this promising technology, read the full article in Nature.

Trở lại      In      Số lần xem: 598

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD