Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  62
 Total visitors :  7653672

Scientists urge shifting more nitrogen to low-input farms and better use on high-yield farms

Integrated management of organic and inorganic nitrogen sources in high- to low-yield cereal production could bring yearly savings in nitrogen fertilizer of over 1 million tons in India, some 90,000 tons in Ethiopia, and more than 20,000 tons in Malawi, according to a new scientific paper, “Spatially differentiated nitrogen supply is key in a global food-fertilizer price crisis.” “Global policies and governments should prioritize nitrogen supplies to low-yield, low-fertility cropping systems, such as smallholder maize and rice farms in Malawi,

CIMMYT News; July 3 2023

 

Integrated management of organic and inorganic nitrogen sources in high- to low-yield cereal production could bring yearly savings in nitrogen fertilizer of over 1 million tons in India, some 90,000 tons in Ethiopia, and more than 20,000 tons in Malawi, according to a new scientific paper, “Spatially differentiated nitrogen supply is key in a global food-fertilizer price crisis.”

 

“Global policies and governments should prioritize nitrogen supplies to low-yield, low-fertility cropping systems, such as smallholder maize and rice farms in Malawi, which are representative of the highly N-deficient cereal systems relied upon by over 100 million people in sub-Saharan Africa,” said Sieglinde Snapp, director of the Sustainable Agrifood Systems Program at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the paper. “Those farmers should also ramp up organic nitrogen inputs, such as manure and legume crops.”

 

In the intensive, high-yield cropping systems of India, farmers generally over-apply N fertilizer on 90% of the rice and wheat crops and more than half of maize crops. Less than half the nitrogen is taken up and used by the crops and the rest is lost into the environment, contaminating water, land, and the atmosphere. “Simply saving the excess fertilizer from over-fertilized areas and shifting it to low-application areas could increase global crop yields by 30%, with huge reductions in greenhouse gas emissions,” said Tek Sapkota, co-author of the paper and climate change leader at CIMMYT.

 

This study is based on evidence of achievable shifts in nitrogen management over 1-2 years, for a modest proportion of cropped area (10%). “We did not assess interventions with longer time horizons or large investment requirements such as precision agriculture, mechanization, or deep placement of fertilizer,” Snapp explained.

 

Snapp and her colleagues used evidence from the scientific literature to estimate N-fertilizer savings from the above interventions for maize, wheat, and rice cropping systems in India, Ethiopia, and Malawi. Integrated organic and inorganic nitrogen management was estimated by considering manure and legume N inputs along with N fertilizers. The effect of reallocating public subsidies to more cost-effective, high-N fertilizer was calculated as the extra nitrogen that could be made available through a lower unit cost of nitrogen.

 

See https://www.cgiar.org/news-events/news/scientists-urge-shifting-more-nitrogen-to-low-input-farms-and-better-use-on-high-yield-farms

Trở lại      In      Số lần xem: 154

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD