Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  68
 Total visitors :  7652020

Targeted mutagenesis of the vacuolar H+ translocating pyrophosphatase gene reduces grain chalkiness in rice

rain chalkiness is a major concern in rice production because it impacts milling yield and cooking quality, eventually reducing market value of the rice. A gene encoding vacuolar H+ translocating pyrophosphatase (V-PPase) is a major quantitative trait locus in indica rice, controlling grain chalkiness. Higher transcriptional activity of this gene is associated with increased chalk content. However, whether the suppression of V-PPase could reduce chalkiness is not clear.

Peter James Icalia GannDominic DharwadkerSajedeh Rezaei CheratiKari VinzantMariya KhodakovskayaVibha Srivastava

The Plant Journal; (Published on line: May 2023); Volume115, Issue5; September 2023

Pages 1261-1276

Figure: Grain chalkiness in rice (Oryza savtiva L.) (Mitsui et al. 2013)

SUMMARY

Grain chalkiness is a major concern in rice production because it impacts milling yield and cooking quality, eventually reducing market value of the rice. A gene encoding vacuolar H+ translocating pyrophosphatase (V-PPase) is a major quantitative trait locus in indica rice, controlling grain chalkiness. Higher transcriptional activity of this gene is associated with increased chalk content. However, whether the suppression of V-PPase could reduce chalkiness is not clear. Furthermore, natural variation in the chalkiness of japonica rice has not been linked with V-PPase. Here, we describe promoter targeting of the japonica V-PPase allele that led to reduced grain chalkiness and the development of more translucent grains. Disruption of a putative GATA element by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 suppressed V-PPase activity, reduced grain chalkiness and impacted post-germination growth that could be rescued by the exogenous supply of sucrose. The mature grains of the targeted lines showed a much lower percentage of large or medium chalk. Interestingly, the targeted lines developed a significantly lower chalk under heat stress, a major inducer of grain chalk. Metabolomic analysis showed that pathways related to starch and sugar metabolism were affected in the developing grains of the targeted lines that correlated with higher inorganic pyrophosphate and starch contents and upregulation of starch biosynthesis genes. In summary, we show a biotechnology approach of reducing grain chalkiness in rice by downregulating the transcriptional activity of V-PPase that presumably leads to altered metabolic rates, including starch biosynthesis, resulting in more compact packing of starch granules and formation of translucent rice grains.

 

See https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.16317

 

Trở lại      In      Số lần xem: 186

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD