Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  10
 Total visitors :  7479341

Genome-Wide Analysis and Expression Profiling of Rice Hybrid Proline-Rich Proteins in Response to Biotic and Abiotic Stresses, and Hormone Treatment.
Thursday, 2019/09/19 | 08:20:48

Kapoor RKumar GArya PJaswal RJain PSingh KSharma TR.

Plants (Basel). 2019 Sep 11;8(9). pii: E343. doi: 10.3390/plants8090343.

Abstract

Hybrid proline-rich proteins (HyPRPs) belong to the family of 8-cysteine motif (8CM) containing proteins that play important roles in plant development processes, and tolerance to biotic and abiotic stresses. To gain insight into the rice HyPRPs, we performed a systematic genome-wide analysis and identified 45 OsHyPRP genes encoding 46 OsHyPRP proteins. The phylogenetic relationships of OsHyPRP proteins with monocots (maize, sorghum, and Brachypodium) and a dicot (Arabidopsis) showed clustering of the majority of OsHyPRPs along with those from other monocots, which suggests lineage-specific evolution of monocots HyPRPs. Based on our previous RNA-Seq study, we selected differentially expressed OsHyPRPs genes and used quantitative real-time-PCR (qRT-PCR) to measure their transcriptional responses to biotic (Magnaporthe oryzae) and abiotic (heat, cold, and salt) stresses and hormone treatment (Abscisic acid; ABA, Methyl-Jasmonate; MeJA, and Salicylic acid; SA) in rice blast susceptible Pusa Basmati-1 (PB1) and blast-resistant near-isogenic line PB1+Pi9. The induction of OsHyPRP16 expression in response to the majority of stresses and hormonal treatments was highly correlated with the number of cis-regulatory elements present in its promoter region. In silico docking analysis of OsHyPRP16 showed its interaction with sterols of fungal/protozoan origin. The characterization of the OsHyPRP gene family enables us to recognize the plausible role of OsHyPRP16 in stress tolerance.

 

See https://www.mdpi.com/2223-7747/8/9/343

Figure 3:

Phylogenetic relationship of rice HyPRPs with that of Arabidopsis, maize, sorghum and B. distachyon. The 8CM region of all the HyPRPs was used to construct the phylogenetic tree. The multiple sequence alignment and phylogenetic tree construction were performed with MEGA6.06 using maximum likelihood method with 500 bootstrap replicates. The different shapes with color code represent the HyPRPs of different plant species; red sphere for Arabidopsis, magenta square for rice, cyan triangle for sorghum, lawn-green diamond for maize, and blue diamond for Brachypodium. The one protein each from sorghum and Arabidopsis does not group with other HyPRPs and thus considered as highly divergent outliers.

Back      Print      View: 345

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD