Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  18
 Total visitors :  7666618

A novel mutant allele at the Cleistogamy 1 locus in barley
Thursday, 2021/10/21 | 07:23:04

Ning WangKatsuyuki KakedaMasahiro TomokazuCheng LiuMegumi YoshidaNaoyuki Kawada & Takao Komatsuda

Theoretical and Applied Genetics October 2021; vol. 134:3183–3193 

 

Figure: Barley spike branching

Key Message

A chasmogamous mutant was induced by exposing a cleistogamous cultivar to sodium azide. The altered cly1 sequence in the mutant was not in the miR172 binding site, as is the case in other known cleistogamous alleles, but rather in a region encoding one of the gene product’s two AP2 domains.

Abstract

The genetic basis of cleistogamy (in which pollination occurs before the flower opens) in barley is centered on the Cleistogamy 1 locus (cly1). The sequence of the microRNA (miR172)-targeting site in the gene, which belongs to the APETALA2 family, differs between cleistogamous and chasmogamous cultivars at a single nucleotide position, resulting in the differential ability of the lodicules to swell. Here, mutagenesis of the barley cultivar ‘Misato Golden’ (which carries the cly1.b allele), achieved using sodium azide, was used to induce a change from cleistogamy to chasmogamy (non-cleistogamous flowering). The cly1 coding sequence in the selected mutant differed from that of cly1.b by two non-synonymous mutations, one of which was responsible for an altered residue in one of the AP2 domains present in the Cly1 protein. Although there was no difference in the miR172 targeting site between cly1.b and the novel allele (designated cly1.b3), the mutant’s lodicules’ ability to swell was indistinguishable from that observed in cultivars carrying the chasmogamous allele Cly1.a. The phenotype of cly1.b3/cly1.bcly1.b3/cly1.b2 and cly1.b3/cly1.c heterozygotes indicated that cly1.b3 is recessive or incompletely dominant with respect to these alleles.

 

See: https://link.springer.com/article/10.1007/s00122-021-03884-1

Back      Print      View: 220

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD