Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  49
 Total visitors :  7669895

CIPK11: a calcineurin B-like protein-interacting protein kinase from Nitraria tangutorum, confers tolerance to salt and drought in Arabidopsis
Monday, 2021/03/08 | 08:34:17

Lu Lu, Xinying Chen, Pengkai Wang, Ye Lu, Jingbo Zhang, Xiuyan Yang, Tielong Cheng, Jisen Shi & Jinhui Chen

BMC Plant Biology; 21, Article number: 123 (2021); March 1 2021.

ABSTRACT

The CIPKs are a group of plant-specific Ser/Thr protein kinases acting in response to calcium signaling, which plays an important role in the physiological and developmental adaptation of plants to adverse environments. However, the functions of halophyte-derived CIPKs are still poorly understood, that limits a potential application of CIPKs from halophytes for improving the tolerance of glycophytes to abiotic stresses.

Results

In this study, we characterized the NtCIPK11 gene from the halophyte Nitraria tangutorum and subsequently analyzed its role in salt and drought stress tolerance, using Arabidopsis as a transgenic model system. NtCIPK11 expression was upregulated in N. tangutorum root, stem and blade tissues after salt or drought treatment. Overexpressing NtCIPK11 in Arabidopsis improved seed germination on medium containing different levels of NaCl. Moreover, the transgenic plants grew more vigorously under salt stress and developed longer roots under salt or drought conditions than the WT plants. Furthermore, NtCIPK11 overexpression altered the transcription of genes encoding key enzymes involved in proline metabolism in Arabidopsis exposed to salinity, however, which genes showed a relatively weak expression in the transgenic Arabidopsis undergoing mannitol treatment, a situation that mimics drought stress. Besides, the proline significantly accumulated in NtCIPK11-overexpressing plants compared with WT under NaCl treatment, but that was not observed in the transgenic plants under drought stress caused by mannitol application.

Conclusions

We conclude that NtCIPK11 promotes plant growth and mitigates damage associated with salt stress by regulating the expression of genes controlling proline accumulation. These results extend our understanding on the function of halophyte-derived CIPK genes and suggest that NtCIPK11 can serve as a candidate gene for improving the salt and drought tolerance of glycophytes through genetic engineering.

 

See: https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-021-02878-x

Figure 1: N. tangutorum morphologically and biochemically responded to NaCl stress. a-h Morphology of N. tangutorum during salt treatment: 0 mM NaCl (Left) and 400 mM NaCl (right) treated plants for 0 day (a), 1 day (b), 2 days (c), 3 days (d), 4 days (e) and 8 days (f); the appearance of the plants after the 8-day treatment as described above and 1-day re-watering (g) and 10-day re-watering (h and h′) with tap water; red arrowheads indicate withering leaves; red stars indicate new leaves; scale bar: 1 cm. i-m Effect of NaCl stress on biochemical parameters: activities of POD (i), SOD (j), and CAT (k), proline content (l), and MDA content (m) in the N. tangutorum leaves. The data represent means ± SD of three biological replicates; statistical analyses were performed with one-way ANOVA test with LSD multiple comparisons, ‘*’ p < 0.05, ‘**’ p < 0.01, ‘***’ p < 0.001

Back      Print      View: 240

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD