Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  55
 Total visitors :  7667957

Characterization and elimination of linkage-drag associated with Fusarium wilt race 3 resistance genes
Sunday, 2021/07/11 | 06:06:29

Jessica Chitwood-BrownGary E. ValladTong Geon Lee & Samuel F. Hutton

Theoretical and Applied Genetics July 2021; vol. 134: 2129–2140.

Key message

Reducing the size of the I-3 introgression resulted in eliminating linkage-drag contributing to increased sensitivity to bacterial spot and reduced fruit size. The I-7 gene was determined to have no effect on bacterial spot or fruit size, and germplasm is now available with both the reduced I-3 introgression and I-7.

Abstract

Tomato (Solanum lycopersicum) production is increasingly threatened by Fusarium wilt race 3 (Fol3) caused by the soilborne fungus, Fusarium oxysporum f. sp. lycopersici. Although host resistance based on the I-3 gene is the most effective management strategy, I-3 is associated with detrimental traits including reduced fruit size and increased bacterial spot sensitivity. Previous research demonstrated the association with bacterial spot is not due to the I-3 gene, itself, and we hypothesize that reducing the size of the I-3 introgression will remedy this association. Cultivars with I-7, an additional Fol3 resistance gene, are available but are not widely used commercially, and it is unclear whether I-7 also has negative horticultural associations. To characterize the effect of I-3 on fruit size, segregating populations were developed and evaluated, revealing that the large I-3 introgression decreased fruit size by approximately 21%. We reduced the I-3 introgression from 5 to 140 kb through successive recombinant screening and crossing efforts. The reduced I-3 introgression and I-7 were then separately backcrossed into elite Florida breeding lines and evaluated for effects on bacterial spot sensitivity and fruit size across multiple seasons. The reduced I-3 introgression resulted in significantly less bacterial spot and larger fruit size than the large introgression, and it had no effect on these horticultural characteristics compared with Fol3 susceptibility. I-7 was also found to have no effect on these traits compared to Fol3 susceptibility. Together, these efforts support the development of superior Fol3-resistant cultivars and more durable resistance against this pathogen.

 

See: https://link.springer.com/article/10.1007/s00122-021-03810-5

 

Figure 1: Breeding strategy used to obtain a minimal I-3 introgression. The original introgression size exceeded 5.0 Mb. Recombinant inbred lines (RILs; derived from R12 and R18 (Li et al. 2018)) resulting from recombination events on either side of I-3 were intercrossed, and the F1 was self-pollinated. Flanking markers 7g728 and 7g6362 were used to screen an F2 population and identify the desirable of two possible products of crossing-over which resulted from further recombination within the overlapping homologous region. A plant containing the minimal I-3 introgression was self-pollinated to obtain a homozygous breeding line, Fla. 8978.

Back      Print      View: 205

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD