Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  57
 Total visitors :  7672565

Characterization of a New qLTG3-1 Allele for Low-temperature Germinability in Rice from the Wild Species Oryza rufipogon
Sunday, 2020/08/02 | 07:20:09

 

KC ShimSH KimHS LeeC AdevaYA JeonNgoc Ha LuongWJ KimM AkhtamovYJ ParkSN Ahn

Rice Sci. 2020 Feb 5;13(1):10.

Abstract

Background: Rice (Oryza sativa L.) is generally sensitive to low temperatures, and in production systems that use direct-seeding, low-temperature germinability (LTG) is a desired trait. Previously, the QTLs, qLTG1 and qLTG3, that control LTG, were mapped using the BC4F8 population, which is a cross of Korean elite cultivar Hwaseong and O. rufipogon (IRGC 105491). We have characterized and analyzed the interaction between the two QTLs, by crossing TR20 that has O. rufipogon alleles at qLTG1 and qLTG3 in a Hwaseong background, with Hwaseong, to develop an F2 population.

 

Results: The F2 plants with both qLTG1 and qLTG3 alleles from O. rufipogon showed higher LTG scores, than the plants with only qLTG1 or qLTG3. No significant interaction between the qLTG1 and qLTG3 was observed, indicating that they may regulate LTG via different pathways. Based on its location, qLTG3 appears to be allelic with qLTG3-1, a major QTL known to control LTG. To investigate the genetic differences between the two parents, that were controlling LTG, we compared their qLTG3-1 sequences. In the coding region, three sequence variations leading to amino acid changes were identified between the Hwaseong and O. rufipogon. Of these, a non-synonymous substitution at the 62nd amino acid site, had not previously been reported. To understand the cause of the LTG variations between the parents, we genotyped three sequence variations of qLTG3-1, that were identified in 98 Asian cultivated rice accessions (Oryza sativa L.). The 98 accessions were classified into 5 haplotypes, based on three variations and a 71-bp deletion. Mean low-temperature germination rates were compared among the haplotypes, and haplotype 5 (O. rufipogon-type) showed a significantly higher germination rate than haplotype 2 (Nipponbare-type), and haplotype 3 (Italica Livorno-type).

 

Conclusions: The O. rufipogon qLTG3-1 allele can be utilized for the improvement of LTG in rice breeding programs. Nearly isogenic lines harboring both qLTG1 and qLTG3-1 alleles from O. rufipogon, showed higher LTG scores than the NILs with qLTG1 or qLTG3-1 alone, and the two QTLs regulate LTG via different pathways. To our knowledge, this is the first report to detect a new qLTG3-1 allele and analyze the interaction of the two LTG QTLs in a nearly isogenic background.

 

See https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002630/

 

 

Figure 3: Sequence comparison of the qLTG3–1 gene between the Hwaseong and O. rufipogon. The black box indicates an exon with the position of the amino acid sequence from the start.

Back      Print      View: 220

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD