Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  49
 Total visitors :  7671920

Characterizing introgression-by-environment interactions using maize near isogenic lines
Thursday, 2020/09/24 | 09:01:44

Zhi LiSara B. TiradoDnyaneshwar C. KadamLisa CoffeyNathan D. MillerEdgar P. SpaldingAaron J. LorenzNatalia de LeonShawn M. KaepplerPatrick S. SchnableNathan M. Springer & Candice N. Hirsch

Theoretical and Applied Genetics October 2020 (133): 2761–2773

Key message

Significant introgression-by-environment interactions are observed for traits throughout development from small introgressed segments of the genome.

Abstract

Relatively small genomic introgressions containing quantitative trait loci can have significant impacts on the phenotype of an individual plant. However, the magnitude of phenotypic effects for the same introgression can vary quite substantially in different environments due to introgression-by-environment interactions. To study potential patterns of introgression-by-environment interactions, fifteen near-isogenic lines (NILs) with > 90% B73 genetic background and multiple Mo17 introgressions were grown in 16 different environments. These environments included five geographical locations with multiple planting dates and multiple planting densities. The phenotypic impact of the introgressions was evaluated for up to 26 traits that span different growth stages in each environment to assess introgression-by-environment interactions. Results from this study showed that small portions of the genome can drive significant genotype-by-environment interaction across a wide range of vegetative and reproductive traits, and the magnitude of the introgression-by-environment interaction varies across traits. Some introgressed segments were more prone to introgression-by-environment interaction than others when evaluating the interaction on a whole plant basis throughout developmental time, indicating variation in phenotypic plasticity throughout the genome. Understanding the profile of introgression-by-environment interaction in NILs is useful in consideration of how small introgressions of QTL or transgene containing regions might be expected to impact traits in diverse environments.

 

See https://link.springer.com/article/10.1007/s00122-020-03630-z

Back      Print      View: 269

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD