Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  52
 Total visitors :  7670619

Combined effects of arsenic and Magnaporthe oryzae on rice and alleviation by silicon
Tuesday, 2021/01/05 | 08:28:20

Amelia GriffithPatrick WiseRattandeep GillMichelle PaukettNicole DonofrioAngelia L Seyfferth.

 

Sci Total Environ; 2021 Jan 1; 750:142209.  doi: 10.1016/j.scitotenv.2020.142209

Abstract

While the impacts of arsenic (As) and Magnaporthe oryzae on rice have been well-studied, a dearth of knowledge exists on how rice responds to their combined stress. Moreover, increasing exogenous silicon (Si) can alleviate M. oryzae infection and As uptake, but how increasing exogenous Si affects the combined stress of M. oryzae and As is unknown. We grew three cultivars of rice that varied in their susceptibility to As and M. oryzae under low (50 μM, SiL) and high (1500 μM, SiH) Si with and without As (4 μM, 80/20 As (III)/As(V)) and with or without M. oryzae infection and examined the impacts of treatments on plant As and Si concentrations, severity of disease by M. oryzae, and stress via targeted gene expression. SiH treatments generally decreased shoot As concentrations by 20-70% compared to SiL treatments depending on cultivar and M. oryzae exposure. There was no effect of Si or As treatments on percent of leaf diseased in the As-tolerant cultivar M206, but in the As-sensitive cultivar IR66, SiH treatment decreased percent of leaf diseased in the absence of As and had no impact when As was present. In the M. oryzae-susceptible Sariceltik, plants receiving SiH had significantly fewer lesions than those receiving SiL and plants with the fewest lesions were in the SiH + As treatments. Plants that were exposed to As + M. oryzae were the most stressed when grown under SiL, but this stress response was lowered by SiH treatments. A separate pathogenicity assay with Sariceltik showed that in contrast to our hypothesis, As exposure decreased lesion growth, particularly under SiH treatments, and lessened the impact of M. oryzae on rice. These results suggest that rice grown under replete Si will be able to withstand combined stressors of M. oryzae and As, but will be highly stressed under Si deficient scenarios.

 

See: https://pubmed.ncbi.nlm.nih.gov/33182188/

 

Figure: Magnaporthe oryzae lesions under replete Si.

Back      Print      View: 213

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD