Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  5
 Total visitors :  7516672

Crop pests and predators exhibit inconsistent responses to surrounding landscape composition
Friday, 2018/08/17 | 06:26:18

Daniel S. Karp, Rebecca Chaplin-Kramer, Timothy D. Meehan, Emily A. Martin, Fabrice DeClerck, Heather Grab, Claudio Gratton, Lauren Hunt, Ashley E. Larsen, Alejandra Martínez-Salinas, Megan E. O’Rourke, Adrien Rusch, Katja Poveda, Mattias Jonsson, Jay A. Rosenheim, Nancy A. Schellhorn, Teja Tscharntke, Stephen D. Wratten, Wei Zhang, Aaron L. Iverson, Lynn S. Adler, Matthias Albrecht, Audrey Alignier, Gina M. Angelella, Muhammad Zubair Anjum, Jacques Avelino, Péter Batáry, Johannes M. Baveco, Felix J. J. A. Bianchi, Klaus Birkhofer, Eric W. Bohnenblust, Riccardo Bommarco, Michael J. Brewer, Berta Caballero-López, Yves Carrière, Luísa G. Carvalheiro, Luis Cayuela, Mary Centrella, Aleksandar Ćetković, Dominic Charles Henri, Ariane Chabert, Alejandro C. Costamagna, Aldo De la Mora, Joop de Kraker, Nicolas Desneux, Eva Diehl, Tim Diekötter, Carsten F. Dormann, James O. Eckberg, Martin H. Entling, Daniela Fiedler, Pierre Franck, F. J. Frank van Veen, Thomas Frank, Vesna Gagic, Michael P. D. Garratt, Awraris Getachew, David J. Gonthier, Peter B. Goodell, Ignazio Graziosi, Russell L. Groves, Geoff M. Gurr, Zachary Hajian-Forooshani, George E. Heimpel, John D. Herrmann, Anders S. Huseth, Diego J. Inclán, Adam J. Ingrao, Phirun Iv, Katja Jacot, Gregg A. Johnson, Laura Jones, Marina Kaiser, Joe M. Kaser, Tamar Keasar, Tania N. Kim, Miriam Kishinevsky, Douglas A. Landis, Blas Lavandero, Claire Lavigne, Anne Le Ralec, Debissa Lemessa, Deborah K. Letourneau, Heidi Liere, Yanhui Lu, Yael Lubin, Tim Luttermoser, Bea Maas, Kevi Mace, Filipe Madeira, Viktoria Mader, Anne Marie Cortesero, Lorenzo Marini, Eliana Martinez, Holly M. Martinson, Philippe Menozzi, Matthew G. E. Mitchell, Tadashi Miyashita, Gonzalo A. R. Molina, Marco A. Molina-Montenegro, Matthew E. O’Neal, Itai Opatovsky, Sebaastian Ortiz-Martinez, Michael Nash, Örjan Östman, Annie Ouin, Damie Pak, Daniel Paredes, Soroush Parsa, Hazel Parry, Ricardo Perez-Alvarez, David J. Perović, Julie A. Peterson, Sandrine Petit, Stacy M. Philpott, Manuel Plantegenest, Milan Plećaš, Therese Pluess, Xavier Pons, Simon G. Potts, Richard F. Pywell, David W. Ragsdale, Tatyana A. Rand, Lucie Raymond, Benoît Ricci, Chris Sargent, Jean-Pierre Sarthou, Julia Saulais, Jessica Schäckermann, Nick P. Schmidt, Gudrun Schneider, Christof Schüepp, Frances S. Sivakoff, Henrik G. Smith, Kaitlin Stack Whitney, Sonja Stutz, Zsofia Szendrei, Mayura B. Takada, Hisatomo Taki, Giovanni Tamburini, Linda J. Thomson, Yann Tricault, Noelline Tsafack, Matthias Tschumi, Muriel Valantin-Morison, Mai Van Trinh, Wopke van der Werf, Kerri T. Vierling, Ben P. Werling, Jennifer B. Wickens, Victoria J. Wickens, Ben A. Woodcock, Kris Wyckhuys, Haijun Xiao, Mika Yasuda, Akira Yoshioka, and Yi Zou

 

PNAS August 7, 2018. 201800042;

Significance

Decades of research have fostered the now-prevalent assumption that noncrop habitat facilitates better pest suppression by providing shelter and food resources to the predators and parasitoids of crop pests. Based on our analysis of the largest pest-control database of its kind, noncrop habitat surrounding farm fields does affect multiple dimensions of pest control, but the actual responses of pests and enemies are highly variable across geographies and cropping systems. Because noncrop habitat often does not enhance biological control, more information about local farming contexts is needed before habitat conservation can be recommended as a viable pest-suppression strategy. Consequently, when pest control does not benefit from noncrop vegetation, farms will need to be carefully comanaged for competing conservation and production objectives.

Abstract

The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies.

 

See: http://www.pnas.org/content/early/2018/08/06/1800042115

 

Figure 2: Landscape effects on pest-control variables. After selecting the most predictive model for each pest-control response (N = 367) and redefining land-cover variables as natural (forest, grassland, and scrubland; green bars) versus crop (annual and perennial; orange bars), we tallied the number of pest-control responses for which models had either positive (solid), negative (diagonal hashed), or mixed (horizontal) estimates of the effect of each landscape predictor. Panels represent the seven pest-control variables, including abundance (A) and activity (B and C) of natural enemies; abundance (D and E) and activity (F) of pests; and crop yields (G). χ2 tests indicated that pest-control response variables showed heterogeneous patterns of association with the extent of surrounding natural habitat and cropland—with roughly equivalent numbers of pest-control responses having models with positive and negative effects (all P > 0.05).

Back      Print      View: 397

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD