Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  50
 Total visitors :  7672144

Dominant complementary interaction between OsC1 and two tightly linked genes, Rb1 and Rb2, controls the purple leaf sheath in rice
Saturday, 2020/08/29 | 09:18:42

Wei HuTianhao ZhouZhongmin HanCong Tan & Yongzhong Xing

Theoretical and Applied Genetics September 2020; vol. 133: 2555–2566

Key message

Two tightly linked genes for rice purple leaf sheath were identified via map-based cloning. Further analysis indicated that these two genes together with OsC1 co-regulating the purple leaf sheath.

Abstract

The purple color of the leaf sheath in rice is dependent on the accumulation of anthocyanins such as cyanidin 3-O-glucoside (C3G) and peonidin 3-O-glucoside (P3G). Although many genes related to leaf sheath color have been mapped, the genetic basis for leaf sheath color is not yet clear. Here, PSH1 (purple leaf sheath 1) was mapped to chromosome 1 using an F2 and a RIL population. Map-based cloning and transformation assays further divided PSH1 as two tightly linked bHLH genes, Rb1 and Rb2. Ectopic expression of these two genes resulted in substantial accumulation of C3G and P3G in the leaf blade, leaf sheath and pericarp. Single gene mutants displayed a faded purple leaf sheath or green leaf sheath in the top half of the leaf sheath, but double mutants displayed a green leaf sheath, indicating that both genes have dosage effects on anthocyanin synthesis. However, overexpression of Rb1 and Rb2 sharply decreased grain filling. A segregation ratio of green to purple was 15:1 observed in the F2 population from parents Minghui 63 and Xizang 2, which both had green leaf sheaths; these results demonstrate that dominant complementary interaction between OsC1 and Rb (Rb1 and Rb2) controls the purple leaf sheath. These findings systematically uncovered the genetic basis of leaf sheath color and provided alternative genes for breeding anthocyanin-rich rice.

 

See https://link.springer.com/article/10.1007/s00122-020-03617-w

Back      Print      View: 241

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD