Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  3
 Total visitors :  7516927

Efficiency of multi-trait, indirect, and trait-assisted genomic selection for improvement of biomass sorghum
Wednesday, 2018/03/07 | 08:18:00

Samuel B. Fernandes, Kaio O. G. Dias, Daniel F. Ferreira, Patrick J. Brown

Theoretical and Applied Genetics; March 2018, Volume 131, Issue 3, pp 747–755

Abstract

Key message

We compare genomic selection methods that use correlated traits to help predict biomass yield in sorghum, and find that trait-assisted genomic selection performs best.

Abstract

Genomic selection (GS) is usually performed on a single trait, but correlated traits can also help predict a focal trait through indirect or multi-trait GS. In this study, we use a pre-breeding population of biomass sorghum to compare strategies that use correlated traits to improve prediction of biomass yield, the focal trait. Correlated traits include moisture, plant height measured at monthly intervals between planting and harvest, and the area under the growth progress curve. In addition to single- and multi-trait direct and indirect GS, we test a new strategy called trait-assisted GS, in which correlated traits are used along with marker data in the validation population to predict a focal trait. Single-trait GS for biomass yield had a prediction accuracy of 0.40. Indirect GS performed best using area under the growth progress curve to predict biomass yield, with a prediction accuracy of 0.37, and did not differ from indirect multi-trait GS that also used moisture information. Multi-trait GS and single-trait GS yielded similar results, indicating that correlated traits did not improve prediction of biomass yield in a standard GS scenario. However, trait-assisted GS increased prediction accuracy by up to 50% when using plant height in both the training and validation populations to help predict yield in the validation population. Coincidence between selected genotypes in phenotypic and genomic selection was also highest in trait-assisted GS. Overall, these results suggest that trait-assisted GS can be an efficient strategy when correlated traits are obtained earlier or more inexpensively than a focal trait.

 

See https://link.springer.com/article/10.1007/s00122-017-3033-y           

Back      Print      View: 454

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD