Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  4
 Total visitors :  7516683

Fluopyram Sensitivity and Functional Characterization of SdhB in the Fusarium solani Species Complex Causing Soybean Sudden Death Syndrome
Monday, 2018/10/22 | 18:10:29

Sang HWitte AJacobs JLChang HXWang JRoth MGChilvers MI.

 

Front Microbiol. 2018 Oct 1;9:2335.

 

Abstract

The succinate dehydrogenase inhibitor (SDHI) fungicide, fluopyram, is used as a soybean seed treatment to manage Fusarium virguliforme, the casual agent of sudden death syndrome (SDS). More recently, other species within clade 2 of the Fusarium solani species, F. tucumaniaein South America and F. brasiliense in America and Africa, have been recognized as additional agents capable of causing SDS. To determine if fluopyram could be used for management of SDS caused by these species, in vitro sensitivity tests of the three Fusarium species to fluopyram were conducted. The mean EC50 values of F. brasiliense and F. virguliforme strains to fluopyram were 1.96 and 2.21 μg ml-1, respectively, but interestingly F. tucumaniae strains were highly sensitive (mean EC50 = 0.25 μg ml-1) to fluopyram compared to strains of the other two species. A sequence analysis of Sdh genes of Fusarium strains revealed that the F. tucumaniae strains contain an arginine at codon 277 in the SdhB gene instead of a glycine as in other Fusarium species. Replacement of glycine to arginine in SdhB-277 in a F. virguliforme wild-type strain Mont-1 through genetic transformation resulted in increased sensitivity to two SDHI fungicides, fluopyram and boscalid. Similar to a F. tucumaniae strain, the Mont-1 (SdhBG277R) mutant caused less SDS and root rot disease than Mont-1 on soybeanseedlings with the fluopyram seed treatment. Our study suggests the amino acid difference in the SdhB in F. tucumaniae results in fluopyram being efficacious if used as a seed treatment for management of F. tucumaniae, which is the most abundant SDS causing species in South America. The establishment of baseline sensitivity of Fusarium species to fluopyram will contribute to effective strategies for managing Fusarium diseases in soybean and other pathosystems such as dry bean.

 

See https://www.ncbi.nlm.nih.gov/pubmed/30327645

 

Description: An external file that holds a picture, illustration, etc.
Object name is fmicb-09-02335-g002.jpg

Figure 2: Validation of F. virguliforme mutants Mont-1(SdhBG277R)-1 and -2. (A) Schematic diagram of the SdhB gene and hygromycin resistance cassette (PtrpC and hph) and short arrows indicate primer binding sites. (B) Primer pair F_detFvSdhB/R_YG was used to amplify the 2,058-bp fragment of the left flanking region. (C) Primer pair F_HY /R_detFvSdhB was used to amplify the 2,171-bp fragment of right flanking region. (D) Primer pair F_detFvSdhB/R_detFvSdhB was used to amplify the fragment containing upstream and full length of SdhB, hygromycin resistance cassette, and downstream of SdhB (3,763-bp). (E) Primer pair F_ptrpC/R_hph was used to amplify the hygromycin resistance cassette (1,391-bp). (F) The sequence of the fragment from F_detSdhB/R_detSdhB in the strain Mont-1(SdhBG277R)-1 indicated the successful replacement from SdhB-277G to SdhB-277R.

Back      Print      View: 373

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD