Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  7
 Total visitors :  7481664

Genome-wide analysis of carotenoid cleavage oxygenases and identification of ripening-associated DzNCED5a in durian (Durio zibethinus) fruit
Sunday, 2024/03/10 | 08:13:50

Kittiya TantisuwanichkulSupaart Sirikantaramas

Plant Physiol Biochem.; 2024 Jan: 206:108253. doi: 10.1016/j.plaphy.2023.108253.3.

Abstract

Durian (Durio zibethinus L.), popularly known as the "King of fruits," holds significant economic importance in Southeast Asia, including Thailand. During its ripening process, the phytohormone abscisic acid (ABA) content has been reported to increase. However, a comprehensive understanding of ABA's specific role in durian fruit ripening remains elusive. Furthermore, little is known about the molecular aspects of the carotenoid cleavage pathway in this iconic fruit. Therefore, we performed genome-wide identification of the carotenoid cleavage oxygenase (CCO) family in durian. This family includes the nine-cis-epoxycarotenoid dioxygenases (NCEDs) responsible for ABA production and the carotenoid cleavage dioxygenases exhibiting diverse substrate specificities. Through phylogenetic analysis, we classified 14 CCOs in durian into 8 distinct subfamilies. Notably, each DzCCO subfamily displayed a conserved motif composition. Cis-acting element prediction showed that cis-elements related to plant hormones and environmental stress responses were distributed in the DzCCO promoter. In addition, transcriptome analysis was performed to examine the expression pattern during the fruit development and ripening stages. Interestingly, DzNCED5a, a ripening-associated gene, exhibited the highest expression level at the ripe stage, outperforming other CCOs. Its expression markedly correlated with increased ABA contents during the ripening stages of both the "Monthong" variety and other durian cultivars. Transiently expressed DzNCED5a in Nicotiana benthamiana leaves confirmed its function in ABA biosynthesis. These findings highlight the involvement of DzNCED5a in ABA production and its potential importance in durian fruit ripening. Overall, this study provides insights into the significance of CCOs in durian fruit ripening.

 

See: https://pubmed.ncbi.nlm.nih.gov/38086212/

 

Fig. 1. (A) Phylogenetic tree and (B) conserved motif analysis of CCO proteins from Durio zibethenus, Arabidopsis thaliana, and Solanum lycopersicum. ClustalW was used for multiple alignment. MEGA 11 was used for constructing the tree via neighbor-joining methods with the default parameter (Tamura et al., 2021). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) is shown above the branches (only scores above 60 are shown). The conserved motifs were identified by MEME suit version 5.5.2 (https://meme-suite.org/meme/tools/meme) and visualized with TBtools (Chen et al., 2020).

Back      Print      View: 56

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD