Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  47
 Total visitors :  7672135

Heritable epigenetic diversity for conservation and utilization of epigenetic germplasm resources of clonal East African Highland banana (EAHB) accessions
Thursday, 2020/08/27 | 08:29:47

M. KitaviR. CashellM. FergusonJ. LorenzenM. NyineP. C. McKeown & C. Spillane

Theoretical and Applied Genetics September 2020, vol. 133: 2605–2625.

 

Key message

 

Genetically identical East African Highland banana (EAHB) clones are epigenetically diverse with heritable epialleles that can contribute to morphological diversity.

 

Abstract

 

Heritable epigenetic variation can contribute to agronomic traits in crops and should be considered in germplasm conservation. Despite the genetic uniformity arising from a genetic bottleneck of one ancestral clone, followed by subsequent vegetative propagation, East African Highland bananas (EAHBs) display significant phenotypic diversity potentially arising from somatic mutations, heritable epialleles and/or genotype-by-environment interactions. Here, we use DNA methylation profiling across EAHB accessions representing most of the primary EAHB genepool to demonstrate that the genetically uniform EAHB genepool harbours significant epigenetic diversity. By analysing 724 polymorphic DNA methylation sites by methylation-sensitive AFLP across 90 EAHB cultivars, we could differentiate the EAHB varieties according to their regions (Kenya and Uganda). In contrast, there was minimal association of DNA methylation variation with the five morphological groups that are used to classify EAHBs. We further analysed DNA methylation patterns in parent–offspring cohort, which were maintained in offspring generated by sexual (seed) and asexual (vegetative) propagation, with higher levels of altered DNA methylation observed in vegetatively generated offspring. Our results indicate that the phenotypic diversity of near-isogenic EAHBs is mirrored by considerable DNA methylation variation, which is transmitted between generations by both vegetative reproduction and seed reproduction. Genetically uniform vegetatively propagated crops such as EAHBs harbour considerable heritable epigenetic variation, where heritable epialleles could arise in offspring and contribute to functional traits. This study provides a basis for developing strategies for conservation of epigenetic resources and for integration of epimarkers into crop breeding programmes.

 

See https://link.springer.com/article/10.1007/s00122-020-03620-1

 

Figure: Proportion of genome-wide cytosine methylation in 724 MsAFLP loci of 90 EAHB cultivars. Differences in the number of the four types of fragments scored in the 90 cultivars were significant (Kruskal–Wallis test P < 0.0001, *** and Dunn’s Multiple comparison test)

Back      Print      View: 250

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD