Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  48
 Total visitors :  7672553

High-density SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut (Arachis hypogaea)
Thursday, 2020/07/16 | 08:23:13

Shahid Ali KhanHua ChenYe DengYuhua ChenChong ZhangTiecheng CaiNiaz AliGandeka MamadouDongyang XieBaozhu GuoRajeev K. Varshney & Weijian Zhuang

Theoretical and Applied Genetics July 2020; vol. 133:2239–2257

Key message

Two novel resistant QTLs mapped and candidate genes identified for Aspergillus flavus resistance in cultivated peanut using SLAF-seq.

Abstract

Aflatoxin contamination in peanuts caused by Aspergillus flavus is a serious food safety issue for human health around the world. Host plant resistance to fungal infection and reduction in aflatoxin are crucial for mitigating this problem. Identification of the resistance-linked markers can be used in marker-assisted breeding for varietal development. Here we report construction of two high-density genetic linkage maps with 1975 SNP loci and 5022 SNP loci, respectively. Two consistent quantitative trait loci (QTL) were identified as qRAF-3-1 and qRAF-14-1, which located on chromosomes A03 and B04, respectively. QTL qRAF-3-1 was mapped within 1.67 cM and had more than 19% phenotypic variance explained (PVE), while qRAF-14-1 was located within 1.34 cM with 5.15% PVE. While comparing with the reference genome, the mapped QTLs, qRAF-3-1 and qRAF-14-1, were located within a physical distance of 1.44 Megabase pair (Mbp) and 2.22 Mbp, harboring 67 and 137 genes, respectively. Among the identified candidate genes, six genes with the same function were found within both QTLs regions. In addition, putative disease resistance RPP13-like protein 1 (RPP13), lipoxygenase (Lox), WRKY transcription factor (WRKY) and cytochrome P450 71B34 genes were also identified. Using microarray analysis, genes responded to Aflavus infection included coding for RPP13, pentatricopeptide repeat-containing-like protein, and Lox which may be possible candidate genes for resistance to Aflavus. The QTLs and candidate genes will further facilitate marker development and validation of genes for deployment in the molecular breeding programs against Aflavus in peanuts.

 

See https://link.springer.com/article/10.1007/s00122-020-03594-0

Back      Print      View: 205

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD