Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  6
 Total visitors :  7516781

High-throughput genotyping-by-sequencing facilitates molecular tagging of a novel rust resistance gene, R 15 , in sunflower (Helianthus annuus L.)
Monday, 2018/07/16 | 08:30:54

G. J. Ma, Q. J. Song, S. G. Markell, L. L. Qi

Theoretical and Applied Genetics, July 2018, Volume 131, Issue 7, pp 1423–1432

Key message

A novel rust resistance gene, R 15 , derived from the cultivated sunflower HA-R8 was assigned to linkage group 8 of the sunflower genome using a genotyping-by-sequencing approach. SNP markers closely linked to R 15 were identified, facilitating marker-assisted selection of resistance genes.

Abstract

The rust virulence gene is co-evolving with the resistance gene in sunflower, leading to the emergence of new physiologic pathotypes. This presents a continuous threat to the sunflower crop necessitating the development of resistant sunflower hybrids providing a more efficient, durable, and environmentally friendly host plant resistance. The inbred line HA-R8 carries a gene conferring resistance to all known races of the rust pathogen in North America and can be used as a broad-spectrum resistance resource. Based on phenotypic assessments of 140 F2individuals derived from a cross of HA 89 with HA-R8, rust resistance in the population was found to be conferred by a single dominant gene (R 15 ) originating from HA-R8. Genotypic analysis with the currently available SSR markers failed to find any association between rust resistance and any markers. Therefore, we used genotyping-by-sequencing (GBS) analysis to achieve better genomic coverage. The GBS data showed that R 15 was located at the top end of linkage group (LG) 8. Saturation with 71 previously mapped SNP markers selected within this region further showed that it was located in a resistance gene cluster on LG8, and mapped to a 1.0-cM region between three co-segregating SNP makers SFW01920, SFW00128, and SFW05824 as well as the NSA_008457 SNP marker. These closely linked markers will facilitate marker-assisted selection and breeding in sunflower.

 

See https://link.springer.com/article/10.1007/s00122-018-3087-5

Back      Print      View: 342

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD