Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  20
 Total visitors :  7666888

Mapping QTL associated with partial resistance to Aphanomyces root rot in pea (Pisum sativum L.) using a 13.2 K SNP array and SSR markers
Tuesday, 2021/09/21 | 07:57:04

Longfei WuRudolph Fredua-AgyemanSheau-Fang HwangKan-Fa ChangRobert L. ConnerDebra L. McLaren & Stephen E. Strelkov

Theoretical and Applied Genetics September 2021; vol. 134: 2965–2990

 

Figure: Pisum sativum and symptom of to Aphanomyces root rot.

Key message

A stable and major QTL, which mapped to an approximately 20.0 cM region on pea chromosome 4, was identified as the most consistent region conferring partial resistance to Aphanomyces euteiches.

Abstract

Aphanomyces root rot (ARR), caused by Aphanomyces euteiches Drechs., is a destructive soilborne disease of field pea (Pisum Sativum L.). No completely resistant pea germplasm is available, and current ARR management strategies rely on partial resistance and fungicidal seed treatments. In this study, an F8 recombinant inbred line population of 135 individuals from the cross ‘Reward’ (susceptible) × ‘00-2067’ (tolerant) was evaluated for reaction to ARR under greenhouse conditions with the A. euteiches isolate Ae-MDCR1 and over 2 years in a field nursery in Morden, Manitoba. Root rot severity, foliar weight, plant vigor and height were used as estimates of tolerance to ARR. Genotyping was conducted with a 13.2 K single-nucleotide polymorphism (SNP) array and 222 simple sequence repeat (SSR) markers. Statistical analyses of the phenotypic data indicated significant (P < 0.001) genotypic effects and significant G × E interactions (P < 0.05) in all experiments. After filtering, 3050 (23.1%) of the SNP and 30 (13.5%) of the SSR markers were retained for linkage analysis, which distributed 2999 (2978 SNP + 21 SSR) of the markers onto nine linkage groups representing the seven chromosomes of pea. Mapping of quantitative trait loci (QTL) identified 8 major-effect (R2 > 20%), 13 moderate-effect (10% < R2 < 20%) effect and 6 minor-effect (R2 < 10%) QTL. A genomic region on chromosome 4, delimited by the SNP markers PsCam037549_22628_1642 and PsCam026054_14999_2864, was identified as the most consistent region responsible for partial resistance to A. euteiches isolate Ae-MDCR1. Other genomic regions important for resistance were of the order chromosome 5, 6 and 7.

 

See: https://link.springer.com/article/10.1007/s00122-021-03871-6

Back      Print      View: 193

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD