Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  7
 Total visitors :  7516983

Marker-assisted breeding of the rice restorer line Wanhui 6725 for disease resistance, submergence tolerance and aromatic fragrance.
Tuesday, 2016/12/06 | 08:23:33

Luo Y, Ma T, Zhang A, Ong KH, Li Z, Yang J, Yin Z.

Rice (N Y). 2016 Dec;9(1):66. Epub 2016 Dec 1.

Abstract

BACKGROUND:

Rice is a staple food crop in the world. With the increase in world population and economic development, farmers need to produce more rice in limited field. However, the rice production is frequently affected by biotic and abiotic stresses. The use of natural disease resistance and stress tolerance through genetic breeding is the most efficient and economical way to combat or acclimate to these stresses. In addition, rice with aromatic fragrance can significantly increase market value for its good grain quality. Mianhui 725 (MH725) is an elite restorer line that has been widely used to produce three-line hybrid rice in China. We previously introduced rice bacterial blight resistance genes Xa4 and Xa21 into MH725 and obtained an introgression rice line Wanhui 421 (WH421), which theoretically possesses 96.9% genetic background of MH725.

RESULTS:

Here we report the introduction and pyramiding of disease resistance genes Xa27 and Pi9, submergence tolerance gene Sub1A and aromatic fragrance gene badh2.1 in WH421 through backcrossing and marker-assisted selection. The newly developed introgression rice line was designated as Wanhui 6725 (WH6725), which theoretically possesses 95.0% genetic background of MH725. WH6725 and its hybrid rice conferred disease resistance to both blast and bacterial blight diseases and showed tolerance to submergence for over 14 days without significant loss of viability. Compared with non-aromatic rice MH725, WH6725 has strong aromatic fragrance. The major important agronomic traits and grain quality of WH6725 and its hybrid rice obtained in field trials were similar to those of MH725 and the control hybrid rice, indicating that WH6725 is as good as MH725 when it is used as a restorer line for three-line hybrid rice production.

CONCLUSION:

We have successfully developed a new restorer line WH6725 with disease resistance to rice blast and bacterial blight, tolerance to submergence and aromatic fragrance, which can be used to replace MH725 for hybrid rice production.

See: http://thericejournal.springeropen.com/articles/10.1186/s12284-016-0139-9

 

Fig. 2

Detection of patterns of molecular markers in rice lines. a Patterns of allele-specific markers M265 (for the badh2.1 allele) and M355 (for the Badh2 allele) at the Badh2 locus. b Patterns of co-dominant marker NBS2-1 at the Pi9 locus. c Patterns of co-dominant marker RM23887 linked with the Sub1A locus. d Patterns of co-dominant marker RM224 linked with the Xa4 locus. e Patterns of co-dominant marker 21 at the Xa21 locus. f Patterns of co-dominant marker M124 co-segregated the Xa27 locus. Plant F2-281, marked with an asterisk, was selected and designated as Wanhui 6725 (WH6725) for further study

 

Back      Print      View: 610

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD