Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  2
 Total visitors :  7516573

Molecular characterization and functional analysis of the OsPsbR gene family in rice
Sunday, 2017/03/26 | 06:36:30

Lihua Li, Taozhi Ye, Xiaoling Gao, Rongjun Chen, Jinghong Xu, Chen Xie, Jianqing Zhu, Xiaojian Deng, Pingrong Wang & Zhengjun Xu

Molecular Genetics and Genomics

April 2017, Volume 292, Issue 2, pp 271–281

Abstract

Low temperature may exert a negative impact on agronomical productivity. PsbR was known as the 10 kDa Photosystem II polypeptide. Although plant PsbR is thought to play important roles in photosynthesis, little is known about the contribution of plant PsbR to abiotic stress resistance. The expression patterns of three OsPsbR gene family members, OsPsbR1, OsPsbR2, and OsPsbR3, were characterized in rice ‘Nipponbare’. Under normal condition, OsPsbR1 and OsPsbR3 showed tissue-specific expression, while the expression of OsPsbR2 could not be detected in all tested tissues. OsPsbR1 was upregulated in response to cold stress, and downregulated under drought, salt, or heat conditions. The upregulation of OsPsbR3 was observed under the treatment of ABA, and its downregulation was detected under drought or heat conditions. Upregulation of OsPsbR1 in rice resulted in significantly increased resistance to cold, but did not affect the yield of rice. Furthermore, after 8 h cold-stress treatment, the expression levels of three cold stress-induced marker genes were significantly higher in the overexpression lines L11 and L19 in comparison with the wild type. All these results suggest that OsPsbR1 may play key roles in photosynthesis and cold stress response and thus has the potential to improve cold stress tolerance of crops.

 

See: https://link.springer.com/article/10.1007/s00438-016-1273-1/fulltext.html?wt_mc=alerts.TOCjournal

Back      Print      View: 520

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD