Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  67
 Total visitors :  7668660

Molecular characterization of SlATG18f in response to Tomato leaf curl New Delhi virus infection in tomato and development of a CAPS marker for leaf curl disease tolerance
Sunday, 2021/05/23 | 07:10:22

Ashish PrasadGunaseelen Hari-GowthemMehanathan MuthamilarasanZakir HussainPawan Kumar YadavSandhya Tripathi & Manoj Prasad

Theoretical and Applied Genetics Mat 2021; vol. 134: 1463–1474

 

Figure: Tomato leaf curl disease in tomato.

Key message

Analysis of autophagy-related genes in tomato shows the involvement of SlATG18f in leaf curl disease tolerance and a CAPS marker developed from this gene demonstrates its usefulness in marker-assisted selection.

Abstract

Autophagy is a highly conserved catabolic process regulating cellular homeostasis and adaptation to different biotic and abiotic stress. Several autophagy-related proteins (ATGs) are reported to be involved in autophagic processes, and considering their importance in regulating growth and stress adaptation, these proteins have been identified and characterized in several plant species. However, there is no information available on the role of autophagy-related proteins regulating the tolerance of tomato to tomato leaf curl disease (ToLCD). Given this, the present genome-wide study identified thirty ATG-encoding genes (SlATG) in tomato, followed by their functional characterization. Expression profiling of the SlATG genes in contrasting tomato cultivars subjected to virus infection showed a 4.5-fold upregulation of SlATG18f in the tolerant cultivar. Further, virus-induced gene silencing of SlATG18f in the tolerant cultivar conferred disease susceptibility, which suggested the role of this gene in Tomato leaf curl New Delhi virus tolerance. Comparison of the gene sequence of both tolerant and susceptible cultivars along with the 5′ upstream regions identified an SNP (A/T) at -2916 upstream of the start codon. A cleaved amplified polymorphic sequence (CAPS) marker was developed targeting this region, which showed a significant association with the tolerance characteristics in the tomato germplasm (R2 = 0.1787). Altogether, the study identified a potential gene that could be used to develop ToLCNDV tolerant tomato cultivars using transgene-based or marker-assisted breeding-based approaches.

 

See: https://link.springer.com/article/10.1007/s00122-021-03783-5

Back      Print      View: 202

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD