Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  5
 Total visitors :  7516388

Over-expression of a C3H-type zinc finger gene contributes to salt stress tolerance in transgenic broccoli plants
Thursday, 2017/07/27 | 08:22:13

Ming Jiang, Jing-Jing Jiang, Li-Xiang Miao, Cai-Ming He

Plant Cell, Tissue and Organ Culture; August 2017, Volume 130, Issue 2, pp 239–254

Abstract

C3H-type zinc finger proteins play important roles in plant growth, development, and stress responses. A C3H-type zinc finger gene, designated BoC3H, was isolated from broccoli (Brassica oleracea var. italica). The complete coding sequence of BoC3H was 1074 bp in length, encoding 357 amino acids with two CCCH motifs of C-X7-C-X5-C-X3-H and C-X5-C-X4-C-X3-H. The transcripts of BoC3H were profoundly induced by NaCl, and the highest expression level was observed at 18 h after treatment. Four broccoli lines over-expressing the BoC3H gene were obtained, and they exhibited higher germination rates, dry weight and chlorophyll content in response to salt stress as compared to those of wild type plants. Over-expression of BoC3H significantly decreased hydrogen peroxide (H2O2) level, relative electrical conductivity (REC) and malondialdehyde (MDA) contents, but dramatically increased free proline content, catalase, peroxidase and superoxide dismutase enzyme activities, resulting in less cell death in the leaves of transgenic plants. Taken together, our results suggest that BoC3H is likely to contribute to salt stress tolerance by regulating H2O2, REC, free proline, MDA and antioxidant enzyme levels in broccoli.

 

See https://link.springer.com/article/10.1007/s11240-017-1218-3

Back      Print      View: 509

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD