Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  5
 Total visitors :  7516301

Over-expression of mutated ZmDA1 or ZmDAR1 gene improves maize kernel yield by enhancing starch synthesis
Friday, 2017/08/04 | 08:13:25

G Xie, Z Li, Q Ran, H Wang, J Zhang

Plant Biotechnology Journal; 25 July 2017; DOI: 10.1111/pbi.12763 (Last updated Aug 03 2017)

Summary

Grain weight and grain number are important crop yield determinants. DA1 and DAR1 are the ubiquitin receptors that function as the negative regulators of cell proliferation during development in Arabidopsis. An arginine to lysine mutant at amino acid site 358 could lead to the da1-1 phenotype, which results in an increased organ size and larger seeds. In this study, the mutated ZmDA1 (Zmda1) and mutated ZmDAR1 (Zmdar1) driven by the maize ubiquitin promoter were separately introduced into maize elite inbred line DH4866. The grain yield of the transgenic plants was 15% greater than that of the wild-type in 3 years of field trials due to improvements in the grain number, weight and starch content. Interestingly, the over-expression of Zmda1 and Zmdar1 promoted kernel development, resulting in a more developed basal endosperm transfer cell layer (BETL) than WT and enhanced expression of starch synthase genes. This study suggests that the over-expression of the mutated ZmDA1 or ZmDAR1 genes improves the sugar imports into the sink organ and starch synthesis in maize kernels.

 

See http://onlinelibrary.wiley.com/doi/10.1111/pbi.12763/full

 

Figure 1: An evolutionary tree for the DA1 family, and the expression levels of the ZmDA1 and ZmDAR1 genes. (a) An evolutionary tree for the DA1 gene family in maize and Arabidopsis. (b, c) qRT-PCR analyses of the ZmDA1 and ZmDAR1 gene expression patterns in different organs and stages in the maize inbred line DH4866. Values are the means ± SD; n = 6, three technical replicates and two biological replicates.

Back      Print      View: 702

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD