Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  3
 Total visitors :  7516559

Proteomic analysis reveals O-GlcNAc modification on proteins with key regulatory functions in Arabidopsis
Wednesday, 2017/02/22 | 07:56:58

Shou-Ling Xu, Robert J. Chalkley, Jason C. Maynard, Wenfei Wang, Weimin Ni, Xiaoyue Jiang, Kihye Shin, Ling Cheng, Dasha Savage, Andreas F. R. Hühmer, Alma L. Burlingame, and Zhi-Yong Wang

Significance

Studies in mammalian systems have shown important functions of O-linked N-acetylglucosamine (O-GlcNAc) modification of proteins (O-GlcNAcylation) in a wide range of cellular, physiological, and disease processes. Genetic evidence indicates that O-GlcNAcylation is essential for plant growth and development. However, very few O-GlcNAc–modified proteins have been identified in plants. Here, we report identification of 262 O-GlcNAc–modified proteins in Arabidopsis, revealing both conserved and distinct functions of O-GlcNAc modification in plants. This study uncovers potentially important functions of O-GlcNAcylation in many cellular and developmental pathways and also provides a large number of modification sites for further genetic and molecular dissection of these specific functions. Our study provides the framework of an O-GlcNAc modification network underlying plant growth and development.

 Abstract

Genetic studies have shown essential functions of O-linked N-acetylglucosamine (O-GlcNAc) modification in plants. However, the proteins and sites subject to this posttranslational modification are largely unknown. Here, we report a large-scale proteomic identification of O-GlcNAc–modified proteins and sites in the model plant Arabidopsis thaliana. Using lectin weak affinity chromatography to enrich modified peptides, followed by mass spectrometry, we identified 971 O-GlcNAc–modified peptides belonging to 262 proteins. The modified proteins are involved in cellular regulatory processes, including transcription, translation, epigenetic gene regulation, and signal transduction. Many proteins have functions in developmental and physiological processes specific to plants, such as hormone responses and flower development. Mass spectrometric analysis of phosphopeptides from the same samples showed that a large number of peptides could be modified by either O-GlcNAcylation or phosphorylation, but cooccurrence of the two modifications in the same peptide molecule was rare. Our study generates a snapshot of the O-GlcNAc modification landscape in plants, indicating functions in many cellular regulation pathways and providing a powerful resource for further dissecting these functions at the molecular level.

 

See: http://www.pnas.org/content/114/8/E1536.full

PNAS February 21  2017; vol.114; no.8: E1536–E1543

 

Fig. 1.

Combined analysis for O-GlcNAcylation and phosphorylation from Arabidopsis inflorescence tissues. (A). Flowchart for the serial enrichment and analysis of in vivo phosphorylated and O-GlcNAc–modified peptides. (B) The UV trace of absorbance at 280 nm of three sequential lectin weak affinity chromatography (LWAC) separations of tryptic digest of proteins extracted from Arabidopsis inflorescence tissues, showing enrichment of O-GlcNAc–modified peptides through their retardation on the column (arrows). In each case, an aliquot of GlcNAc (eluting at 4 mL) was injected to elute any complex glycans. Peptides were collected as a single fraction starting at 1.3 mL, desalted, and rerun for a total of three rounds.

 

Back      Print      View: 660

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD